Makefile: fix a comment
[rust-101.git] / workspace / src / part08.rs
1 // Rust-101, Part 08: Associated Types, Modules
2 // ============================================
3
4 use std::{cmp,ops};
5 use part05::BigInt;
6
7
8 // So, let us write a function to "add with carry", and give it the appropriate type. Notice Rust's native support for pairs.
9 fn overflowing_add(a: u64, b: u64, carry: bool) -> (u64, bool) {
10     let sum = a.wrapping_add(b);
11     // If an overflow happened, then the sum will be smaller than *both* summands. Without an overflow, of course, it will be
12     // at least as large as both of them. So, let's just pick one and check.
13     if sum >= a {
14         // The addition did not overflow. <br/>
15         // **Exercise 08.1**: Write the code to handle adding the carry in this case.
16         unimplemented!()
17     } else {
18         // Otherwise, the addition *did* overflow. It is impossible for the addition of the carry
19         // to overflow again, as we are just adding 0 or 1.
20         unimplemented!()
21     }
22 }
23
24 // `overflow_add` is a sufficiently intricate function that a test case is justified.
25 // This should also help you to check your solution of the exercise.
26 /*#[test]*/
27 fn test_overflowing_add() {
28     assert_eq!(overflowing_add(10, 100, false), (110, false));
29     assert_eq!(overflowing_add(10, 100, true), (111, false));
30     assert_eq!(overflowing_add(1 << 63, 1 << 63, false), (0, true));
31     assert_eq!(overflowing_add(1 << 63, 1 << 63, true), (1, true));
32     assert_eq!(overflowing_add(1 << 63, (1 << 63) -1 , true), (0, true));
33 }
34
35 // ## Associated Types
36 impl ops::Add<BigInt> for BigInt {
37
38     // Here, we choose the result type to be again `BigInt`.
39     type Output = BigInt;
40
41     // Now we can write the actual function performing the addition.
42     fn add(self, rhs: BigInt) -> Self::Output {
43         // We know that the result will be *at least* as long as the longer of the two operands,
44         // so we can create a vector with sufficient capacity to avoid expensive reallocations.
45         let max_len = cmp::max(self.data.len(), rhs.data.len());
46         let mut result_vec:Vec<u64> = Vec::with_capacity(max_len);
47         let mut carry = false; /* the current carry bit */
48         for i in 0..max_len {
49             let lhs_val = if i < self.data.len() { self.data[i] } else { 0 };
50             let rhs_val = if i < rhs.data.len() { rhs.data[i] } else { 0 };
51             // Compute next digit and carry. Then, store the digit for the result, and the carry for later.
52             unimplemented!()
53         }
54         // **Exercise 08.2**: Handle the final `carry`, and return the sum.
55         unimplemented!()
56     }
57 }
58
59 // ## Traits and reference types
60
61 // Writing this out becomes a bit tedious, because trait implementations (unlike functions) require full explicit annotation
62 // of lifetimes. Make sure you understand exactly what the following definition says. Notice that we can implement a trait for
63 // a reference type!
64 impl<'a, 'b> ops::Add<&'a BigInt> for &'b BigInt {
65     type Output = BigInt;
66     fn add(self, rhs: &'a BigInt) -> Self::Output {
67         // **Exercise 08.3**: Implement this function.
68         unimplemented!()
69     }
70 }
71
72 // **Exercise 08.4**: Implement the two missing combinations of arguments for `Add`. You should not have to duplicate the implementation.
73
74 // ## Modules
75
76 // Rust calls a bunch of definitions that are grouped together a *module*. You can put the tests in a submodule as follows.
77 #[cfg(test)]
78 mod tests {
79     use part05::BigInt;
80
81     /*#[test]*/
82     fn test_add() {
83         let b1 = BigInt::new(1 << 32);
84         let b2 = BigInt::from_vec(vec![0, 1]);
85
86         assert_eq!(&b1 + &b2, BigInt::from_vec(vec![1 << 32, 1]));
87         // **Exercise 08.5**: Add some more cases to this test.
88     }
89 }
90
91 // **Exercise 08.6**: Write a subtraction function, and testcases for it. Decide for yourself how you want to handle negative results.
92 // For example, you may want to return an `Option`, to panic, or to return `0`.
93