<p>RustBelt is built on top of <em>Iris</em>, a language-agnostic framework, implemented in the Coq proof assistant, for building higher-order concurrent separation logics. This dissertation begins by giving an introduction to Iris, and explaining how Iris enables the derivation of complex high-level reasoning principles from a few simple ingredients. In RustBelt, this technique is exploited crucially to introduce the <em>lifetime logic</em>, which provides a novel separation-logic account of <em>borrowing</em>, a key distinguishing feature of the Rust type system.</p>
-<p>
+<p style="font-wight:bold">
This thesis has received an <a href="https://awards.acm.org/about/2020-doctoral-dissertation" style="font-weight:bold;">Honorable Mention for the ACM Doctoral Dissertation Award</a>,
the <a href="https://sigplan.org/Awards/Dissertation/#2021_Ralf_Jung__Max_Planck_Institute_for_Software_Systems_and_Saarland_University" style="font-weight:bold;">ACM SIGPLAN John C. Reynolds Doctoral Dissertation Award</a> (as one of two recipients),
an <a href="https://www.mpg.de/prizes/otto-hahn-medal" style="font-weight:bold;">Otto Hahn Medal</a>,