@-ify part 01; update main for non-Linux users
authorRalf Jung <post@ralfj.de>
Fri, 26 Jun 2015 17:57:33 +0000 (19:57 +0200)
committerRalf Jung <post@ralfj.de>
Fri, 26 Jun 2015 17:57:33 +0000 (19:57 +0200)
src/main.rs
src/part00.rs
src/part01.rs
workspace/src/part00.rs
workspace/src/part01.rs

index 2f4b7053deef99e9e0455d2f70f5b5dfe60609a0..4ecf632498c9cb1208ad451b1df948c8424a6217 100644 (file)
@@ -5,14 +5,10 @@
 // tutorial for the [Rust language](http://www.rust-lang.org/).
 // It is intended to be an interactive, hands-on course: I believe the only way to
 // *really* learn a language is to write code in it, so you should be coding during
-// the course. I am writing this with a tutorial situation in mind, i.e.,
-// with a teacher being around to guide students through the course and answer
-// questions as they come up. However, I think they may also be useful if you
-// work through them on your own, you will just have to show more initiative yourself:
-// Make sure you actually type some code. It may sound stupid to manually copy code
-// that you could duplicate through the clipboard, but it's actually helpful.
-// If you have questions, check out the "Additional Resources" below. In particular,
-// the IRC channel is filled with awesome people willing to help you! I spent
+// the course.
+// 
+// If you have any questions that are not answered here, check out the "Additional Resources"
+// below. In particular, the IRC channel is filled with awesome people willing to help you! I spent
 // lots of time there ;-)
 // 
 // I will assume some familiarity with programming, and hence not explain the basic
@@ -30,7 +26,7 @@
 // cost. This is combined with the comfort of high-level functional languages and guaranteed
 // safety (as in, the program will not crash). The vast majority of existing
 // languages sacrificies one of these goals for the other. In particular, the
-// first requirement rules out a garbage collector: Rust can run "mare metal".
+// first requirement rules out a garbage collector: Rust can run "bare metal".
 // In fact, Rust rules out more classes of bugs than languages that achieve safety
 // with a GC: Besides dangling pointers and double-free, Rust also prevents issues
 // such as iterator invalidation and race conditions.
 // [the Rust website](http://www.rust-lang.org/). You should go for either the "stable"
 // or the "beta" channel. More detailed installation instructions are provided in
 // [the second chapter of The Book](https://doc.rust-lang.org/stable/book/installing-rust.html).
+// This will also install `cargo`, the tool responsible for building rust projects (or *crates*).
 
 // Next, fetch the Rust-101 source code from the [git repository](http://www.ralfj.de/git/rust-101.git)
-// (also available [on GitHub](https://github.com/RalfJung/rust-101)).
-// To generate your workspace, run `make workspace` (this needs GNU sed). I suggest you now copy the
-// `workspace` folder somewhere else - that will make it much easier to later update the course without
+// (also available [on GitHub](https://github.com/RalfJung/rust-101), and as [zip archive](https://github.com/RalfJung/rust-101/archive/master.zip)).
+// There is a workspace prepared for you in the `workspace` folder. I suggest you copy this
+// folder somewhere else - that will make it much easier to later update the course without
 // overwriting your changes. Try `cargo build` in that new folder to check that compiling your workspace succeeds.
 // (You can also execute it with `cargo run`, but you'll need to do some work before this will succeed.)
 // 
-// If you later want to update the course, do `git pull` followed by `make workspace`. Then copy the files
-// from `workspace/src/` to your workspace that you did not yet work on. (Of course you can also copy the rest,
-// but that would replace all your hard work by the original files with all the holes!)
+// If you later want to update the course, do `git pull` (or re-download the tip archive).
+// Then copy the files from `workspace/src/` to your workspace that you did not yet work on. (Of course you can also
+// copy the rest, but that would replace all your hard work by the original files with all the holes!)
 
 // Course Content
 // --------------
@@ -62,7 +59,7 @@
 // mechanisms like pattern matching and traits. Parts 04-06 introduce the heart of the language, the ideas
 // making it different from anything else out there: Ownership, borrowing, lifetimes. In part 07-??, we
 // continue our tour through Rust with another example. Finally, in parts ??-??, we implement our own
-// version of `grep`, exhibiting useful Rust features as we go.
+// version of `grep`, exhibiting some more Rust features as we go.
 // 
 // Now, open `your-workspace/src/part00.rs` in your favorite editor, and follow the link below for
 // the explanations and exercises. Have fun!
index 2bc40d99b29c230222088ade013669c968ec747f..ed76e81f83469ffd80471ddf63fad053f1d57c1a 100644 (file)
@@ -45,8 +45,8 @@ fn vec_min(vec: Vec<i32>) -> NumberOrNothing {
             NumberOrNothing::Nothing => {
                 min = NumberOrNothing::Number(el);                  /*@*/
             },
-            // In this arm, `min` is currently the number `n`, so let's compute the new minimum and store it. We will write
-            // the function `min_i32` just after we completed this one.
+            // In this arm, `min` is currently the number `n`, so let's compute the new minimum and store it.
+            //@ We will write the function `min_i32` just after we completed this one.
             NumberOrNothing::Number(n) => {
                 let new_min = min_i32(n, el);                       /*@*/
                 min = NumberOrNothing::Number(new_min);             /*@*/
@@ -77,10 +77,10 @@ use self::NumberOrNothing::{Number,Nothing};
 // To call this function, we now just need a list. Of course, ultimately we want to ask the user for
 // a list of numbers, but for now, let's just hard-code something.
 
-// `vec!` is a *macro* (as you can tell from the `!`) that constructs a constant `Vec<_>` with the given
-// elements.
+//@ `vec!` is a *macro* (as you can tell from the `!`) that constructs a constant `Vec<_>` with the given
+//@ elements.
 fn read_vec() -> Vec<i32> {
-    vec![18,5,7,1,9,27]
+    vec![18,5,7,1,9,27]                                             /*@*/
 }
 
 // Finally, let's call our functions and run the code!
@@ -92,10 +92,10 @@ fn read_vec() -> Vec<i32> {
 //@ now, you just need to know that `{}` is the placeholder for a value, and that Rust
 //@ will check at compile-time that you supplied the right number of arguments.
 fn print_number_or_nothing(n: NumberOrNothing) {
-    match n {
-        Nothing => println!("The number is: <nothing>"),
-        Number(n) => println!("The number is: {}", n),
-    };
+    match n {                                                       /*@*/
+        Nothing => println!("The number is: <nothing>"),            /*@*/
+        Number(n) => println!("The number is: {}", n),              /*@*/
+    };                                                              /*@*/
 }
 
 // Putting it all together:
@@ -105,10 +105,11 @@ pub fn main() {
     print_number_or_nothing(min);
 }
 
-// Now try `cargo run` on the console to run above code.
+// You can now use `cargo build` to compile your code. If all goes well, try `cargo run` on the
+// console to run it.
 
 //@ Yay, it said "1"! That's actually the right answer. Okay, we could have
 //@ computed that ourselves, but that's besides the point. More importantly:
 //@ You completed the first part of the course.
 
-// [index](main.html) | previous | [next](part01.html)
+//@ [index](main.html) | previous | [next](part01.html)
index bb3e919f980bc3e4794c2c3a8942aaa31985d08f..11e9077d5ef326b7ee9be9b6d5e4c00fd6042419 100644 (file)
@@ -1,26 +1,28 @@
 // Rust-101, Part 01: Expressions, Inherent methods
 // ================================================
 
-// Even though our code from the first part works, we can still learn a
-// lot by making it prettier. To understand how, it is important to
-// understand that Rust is an "expression-based" language. This means that most of the
-// terms you write down are not just *statements* (executing code), but *expressions*
-// (returning a value). This applies even to the body of entire functions!
+// For Rust to compile this file, make sure to enable the corresponding line
+// in `main.rs` before going on.
+
+//@ Even though our code from the first part works, we can still learn a
+//@ lot by making it prettier. That's because Rust is an "expression-based" language, which
+//@ means that most of the terms you write down are not just *statements* (executing code), but
+//@ *expressions* (returning a value). This applies even to the body of entire functions!
 
 // ## Expression-based programming
-// For example, consider `sqr`:
+//@ For example, consider `sqr`:
 fn sqr(i: i32) -> i32 { i * i }
-// Between the curly braces, we are giving the *expression* that computes the return value.
-// So we can just write `i * i`, the expression that returns the square if `i`!
-// This is very close to how mathematicians write down functions (but with more types).
+//@ Between the curly braces, we are giving the *expression* that computes the return value.
+//@ So we can just write `i * i`, the expression that returns the square if `i`!
+//@ This is very close to how mathematicians write down functions (but with more types).
 
 // Conditionals are also just expressions. You can compare this to the ternary `? :` operator
 // from languages like C.
 fn abs(i: i32) -> i32 { if i >= 0 { i } else { -i } }
 
-// And the same applies to case distinction with `match`: Every `arm` of the match
-// gives the expression that is returned in the respective case.
-// (We repeat the definition from the previous part here.)
+//@ And the same applies to case distinction with `match`: Every `arm` of the match
+//@ gives the expression that is returned in the respective case.
+//@ (We repeat the definition from the previous part here.)
 enum NumberOrNothing {
     Number(i32),
     Nothing
@@ -35,26 +37,26 @@ fn number_or_default(n: NumberOrNothing, default: i32) -> i32 {
 
 // Let us now refactor `vec_min`.
 fn vec_min(v: Vec<i32>) -> NumberOrNothing {
-    // Remember that helper function `min_i32`? Rust allows us to define such helper functions *inside* other
-    // functions. This is just a matter of namespacing, the inner function has no access to the data of the outer
-    // one. Still, being able to nicely group functions can be very useful.
+    //@ Remember that helper function `min_i32`? Rust allows us to define such helper functions *inside* other
+    //@ functions. This is just a matter of namespacing, the inner function has no access to the data of the outer
+    //@ one. Still, being able to nicely group functions can be very useful.
     fn min_i32(a: i32, b: i32) -> i32 {
-        if a < b { a } else { b }
+        if a < b { a } else { b }                                   /*@*/
     }
 
     let mut min = Nothing;
     for e in v {
-        // Notice that all we do here is compute a new value for `min`, and that it will always end
-        // up being a `Number` rather than `Nothing`. In Rust, the structure of the code
-        // can express this uniformity.
-        min = Number(match min {
-            Nothing => e,
-            Number(n) => min_i32(n, e)
-        });
+        //@ Notice that all we do here is compute a new value for `min`, and that it will always end
+        //@ up being a `Number` rather than `Nothing`. In Rust, the structure of the code
+        //@ can express this uniformity.
+        min = Number(match min {                                    /*@*/
+            Nothing => e,                                           /*@*/
+            Number(n) => min_i32(n, e)                              /*@*/
+        });                                                         /*@*/
     }
-    // The `return` keyword exists in Rust, but it is rarely used. Instead, we typically
-    // make use of the fact that the entire function body is an expression, so we can just
-    // write down the desired return value.
+    //@ The `return` keyword exists in Rust, but it is rarely used. Instead, we typically
+    //@ make use of the fact that the entire function body is an expression, so we can just
+    //@ write down the desired return value.
     min
 }
 
@@ -62,10 +64,10 @@ fn vec_min(v: Vec<i32>) -> NumberOrNothing {
 // every step of what's going on.
 
 // ## Inherent implementations
-// So much for `vec_min`. Let us now reconsider `print_number_or_nothing`. That function
-// really belongs pretty close to the type `NumberOrNothing`. In C++ or Java, you would
-// probably make it a method of the type. In Rust, we can achieve something very similar
-// by providing an *inherent implementation*.
+//@ So much for `vec_min`. Let us now reconsider `print_number_or_nothing`. That function
+//@ really belongs pretty close to the type `NumberOrNothing`. In C++ or Java, you would
+//@ probably make it a method of the type. In Rust, we can achieve something very similar
+//@ by providing an *inherent implementation*.
 impl NumberOrNothing {
     fn print(self) {
         match self {
@@ -74,13 +76,13 @@ impl NumberOrNothing {
         };
     }
 }
-// So, what just happened? Rust separates code from data, so the definition of the
-// methods on an `enum` (and also on `struct`, which we will learn about later)
-// is independent of the definition of the type. `self` is like `this` in other
-// languages, and its type is always implicit. So `print` is now a method that
-// takes as first argument a `NumberOrNothing`, just like `print_number_or_nothing`.
-// 
-// Try making `number_or_default` from above an inherent method as well!
+//@ So, what just happened? Rust separates code from data, so the definition of the
+//@ methods on an `enum` (and also on `struct`, which we will learn about later)
+//@ is independent of the definition of the type. `self` is like `this` in other
+//@ languages, and its type is always implicit. So `print` is now a method that
+//@ takes as first argument a `NumberOrNothing`, just like `print_number_or_nothing`.
+//@ 
+//@ Try making `number_or_default` from above an inherent method as well!
 
 // With our refactored functions and methods, `main` now looks as follows:
 fn read_vec() -> Vec<i32> {
@@ -89,7 +91,7 @@ fn read_vec() -> Vec<i32> {
 pub fn main() {
     let vec = read_vec();
     let min = vec_min(vec);
-    min.print();
+    min.print();                                                    /*@*/
 }
 // You will have to replace `part00` by `part01` in the `main` function in
 // `main.rs` to run this code.
index 4f7b403b4ee7cfa60a6987acde6744528faf1778..2998b20ddfd6ef822c19d77ea37e3953008967b5 100644 (file)
@@ -27,8 +27,7 @@ fn vec_min(vec: Vec<i32>) -> NumberOrNothing {
             NumberOrNothing::Nothing => {
                 unimplemented!()
             },
-            // In this arm, `min` is currently the number `n`, so let's compute the new minimum and store it. We will write
-            // the function `min_i32` just after we completed this one.
+            // In this arm, `min` is currently the number `n`, so let's compute the new minimum and store it.
             NumberOrNothing::Number(n) => {
                 unimplemented!()
             }
@@ -58,10 +57,8 @@ use self::NumberOrNothing::{Number,Nothing};
 // To call this function, we now just need a list. Of course, ultimately we want to ask the user for
 // a list of numbers, but for now, let's just hard-code something.
 
-// `vec!` is a *macro* (as you can tell from the `!`) that constructs a constant `Vec<_>` with the given
-// elements.
 fn read_vec() -> Vec<i32> {
-    vec![18,5,7,1,9,27]
+    unimplemented!()
 }
 
 // Finally, let's call our functions and run the code!
@@ -70,10 +67,7 @@ fn read_vec() -> Vec<i32> {
 // So let's write a small helper function that prints such values.
 
 fn print_number_or_nothing(n: NumberOrNothing) {
-    match n {
-        Nothing => println!("The number is: <nothing>"),
-        Number(n) => println!("The number is: {}", n),
-    };
+    unimplemented!()
 }
 
 // Putting it all together:
@@ -83,7 +77,7 @@ pub fn main() {
     print_number_or_nothing(min);
 }
 
-// Now try `cargo run` on the console to run above code.
+// You can now use `cargo build` to compile your code. If all goes well, try `cargo run` on the
+// console to run it.
 
 
-// [index](main.html) | previous | [next](part01.html)
index da94915e48523e39d35299217973710254e08fc0..bcc1b03bbd6ae9efea5d963241dc973e73cf2d0f 100644 (file)
@@ -3,26 +3,17 @@
 // Rust-101, Part 01: Expressions, Inherent methods
 // ================================================
 
-// Even though our code from the first part works, we can still learn a
-// lot by making it prettier. To understand how, it is important to
-// understand that Rust is an "expression-based" language. This means that most of the
-// terms you write down are not just *statements* (executing code), but *expressions*
-// (returning a value). This applies even to the body of entire functions!
+// For Rust to compile this file, make sure to enable the corresponding line
+// in `main.rs` before going on.
+
 
 // ## Expression-based programming
-// For example, consider `sqr`:
 fn sqr(i: i32) -> i32 { i * i }
-// Between the curly braces, we are giving the *expression* that computes the return value.
-// So we can just write `i * i`, the expression that returns the square if `i`!
-// This is very close to how mathematicians write down functions (but with more types).
 
 // Conditionals are also just expressions. You can compare this to the ternary `? :` operator
 // from languages like C.
 fn abs(i: i32) -> i32 { if i >= 0 { i } else { -i } }
 
-// And the same applies to case distinction with `match`: Every `arm` of the match
-// gives the expression that is returned in the respective case.
-// (We repeat the definition from the previous part here.)
 enum NumberOrNothing {
     Number(i32),
     Nothing
@@ -37,26 +28,14 @@ fn number_or_default(n: NumberOrNothing, default: i32) -> i32 {
 
 // Let us now refactor `vec_min`.
 fn vec_min(v: Vec<i32>) -> NumberOrNothing {
-    // Remember that helper function `min_i32`? Rust allows us to define such helper functions *inside* other
-    // functions. This is just a matter of namespacing, the inner function has no access to the data of the outer
-    // one. Still, being able to nicely group functions can be very useful.
     fn min_i32(a: i32, b: i32) -> i32 {
-        if a < b { a } else { b }
+        unimplemented!()
     }
 
     let mut min = Nothing;
     for e in v {
-        // Notice that all we do here is compute a new value for `min`, and that it will always end
-        // up being a `Number` rather than `Nothing`. In Rust, the structure of the code
-        // can express this uniformity.
-        min = Number(match min {
-            Nothing => e,
-            Number(n) => min_i32(n, e)
-        });
+        unimplemented!()
     }
-    // The `return` keyword exists in Rust, but it is rarely used. Instead, we typically
-    // make use of the fact that the entire function body is an expression, so we can just
-    // write down the desired return value.
     min
 }
 
@@ -64,10 +43,6 @@ fn vec_min(v: Vec<i32>) -> NumberOrNothing {
 // every step of what's going on.
 
 // ## Inherent implementations
-// So much for `vec_min`. Let us now reconsider `print_number_or_nothing`. That function
-// really belongs pretty close to the type `NumberOrNothing`. In C++ or Java, you would
-// probably make it a method of the type. In Rust, we can achieve something very similar
-// by providing an *inherent implementation*.
 impl NumberOrNothing {
     fn print(self) {
         match self {
@@ -76,13 +51,6 @@ impl NumberOrNothing {
         };
     }
 }
-// So, what just happened? Rust separates code from data, so the definition of the
-// methods on an `enum` (and also on `struct`, which we will learn about later)
-// is independent of the definition of the type. `self` is like `this` in other
-// languages, and its type is always implicit. So `print` is now a method that
-// takes as first argument a `NumberOrNothing`, just like `print_number_or_nothing`.
-// 
-// Try making `number_or_default` from above an inherent method as well!
 
 // With our refactored functions and methods, `main` now looks as follows:
 fn read_vec() -> Vec<i32> {
@@ -91,7 +59,7 @@ fn read_vec() -> Vec<i32> {
 pub fn main() {
     let vec = read_vec();
     let min = vec_min(vec);
-    min.print();
+    unimplemented!()
 }
 // You will have to replace `part00` by `part01` in the `main` function in
 // `main.rs` to run this code.