impl<'a, 'b> ops::Add<&'a BigInt> for &'b BigInt {
type Output = BigInt;
fn add(self, rhs: &'a BigInt) -> Self::Output {
- let mut result_vec:Vec<u64> = Vec::with_capacity(cmp::max(self.data.len(), rhs.data.len()));
+ let max_len = cmp::max(self.data.len(), rhs.data.len());
+ let mut result_vec:Vec<u64> = Vec::with_capacity(max_len);
let mut carry:bool = false; // the carry bit
- for (i, val) in (&self.data).into_iter().enumerate() {
+ for i in 0..max_len {
// compute next digit and carry
+ let lhs_val = if i < self.data.len() { self.data[i] } else { 0 };
let rhs_val = if i < rhs.data.len() { rhs.data[i] } else { 0 };
- let (sum, new_carry) = overflowing_add(*val, rhs_val, carry);
+ let (sum, new_carry) = overflowing_add(lhs_val, rhs_val, carry);
// store them
result_vec.push(sum);
carry = new_carry;
result_vec.push(1);
}
// We know that the invariant holds: overflowing_add would only return (0, false) if
- // the arguments are (0, 0, false), but we know that in the last iteration, `val` is the
- // last digit of `self` and hence not 0.
+ // the arguments are (0, 0, false), but we know that in the last iteration, one od the two digits
+ // is the last of its number and hence not 0.
BigInt { data: result_vec }
}
}
assert_eq!(overflowing_add(1 << 63, (1 << 63) -1 , true), (0, true));
}
+ #[test]
+ fn test_add() {
+ let b1 = BigInt::new(1 << 32);
+ let b2 = BigInt::from_vec(vec![0, 1]);
+
+ assert_eq!(&b1 + &b2, BigInt::from_vec(vec![1 << 32, 1]));
+ }
+
#[test]
fn test_inc1() {
let mut b = BigInt::new(0);