-// Since implementing `PartialEq` is a fairly mechanical business, you can let Rust automate this
-// by adding the attribute `derive(PartialEq)` to the type definition. In case you wonder about
-// the "partial", I suggest you check out the documentation of [`PartialEq`](http://doc.rust-lang.org/std/cmp/trait.PartialEq.html)
-// and [`Eq`](http://doc.rust-lang.org/std/cmp/trait.Eq.html). `Eq` can be automatically derived as well.
-
-// Now we can compare `BigInt`s. Rust treats `PratialEq` special in that it is wired to the operator `==`:
-// That operator can not be used on our numbers! Speaking in C++ terms, we just overloaded the `==` operator
-// for `BigInt`. Rust does not have function overloading (i.e., it will not dispatch to different
-// functions depending on the type of the argument). Instead, one typically finds (or defines) a
-// trait that catches the core characteristic common to all the overloads, and writes a single
-// function that's generic in the trait. For example, instead of overloading a function for all
-// the ways a string can be represented, one writes a generic functions over [ToString](http://doc.rust-lang.org/std/string/trait.ToString.html).
-// Usually, there is a trait like this that fits the purpose - and if there is, this has the great
-// advantage that any type *you* write, that can convert to a string, just has to implement
-// that trait to be immediately usable with all the functions out there that generalize over `ToString`.
-// Compare that to C++ or Java, where the only chance to add a new overloading variant is to
-// edit the class of the receiver.
-//
-// Why can we also use `!=`, even though we just overloaded `==`? The answer lies in what's called a *default implementation*.
-// If you check out the documentation of `PartialEq` I linked above, you will see that the trait actually provides
-// two methods: `eq` to test equality, and `ne` to test inequality. As you may have guessed, `!=` is wired to `ne`.
-// The trait *definition* also provides a default implementation of `ne` to be the negation of `eq`. Hence you can just
-// provide `eq`, and `!=` will work fine. Or, if you have a more efficient way of deciding inequality, you can provide
-// `ne` for your type yourself.
+
+//@ Since implementing `PartialEq` is a fairly mechanical business, you can let Rust automate this
+//@ by adding the attribute `derive(PartialEq)` to the type definition. In case you wonder about
+//@ the "partial", I suggest you check out the documentation of
+//@ [`PartialEq`](https://doc.rust-lang.org/std/cmp/trait.PartialEq.html) and
+//@ [`Eq`](https://doc.rust-lang.org/std/cmp/trait.Eq.html). `Eq` can be automatically derived as
+//@ well.
+
+// Now we can compare `BigInt`s. Rust treats `PartialEq` special in that it is wired to the operator
+// `==`:
+//@ That operator can now be used on our numbers! Speaking in C++ terms, we just overloaded the
+//@ `==` operator for `BigInt`. Rust does not have function overloading (i.e., it will not dispatch
+//@ to different functions depending on the type of the argument). Instead, one typically finds (or
+//@ defines) a trait that catches the core characteristic common to all the overloads, and writes a
+//@ single function that's generic in the trait. For example, instead of overloading a function for
+//@ all the ways a string can be represented, one writes a generic functions over
+//@ [ToString](https://doc.rust-lang.org/std/string/trait.ToString.html).
+//@ Usually, there is a trait like this that fits the purpose - and if there is, this has the great
+//@ advantage that any type *you* write, that can convert to a string, just has to implement
+//@ that trait to be immediately usable with all the functions out there that generalize over
+//@ `ToString`.
+//@ Compare that to C++ or Java, where the only chance to add a new overloading variant is to
+//@ edit the class of the receiver.
+//@
+//@ Why can we also use `!=`, even though we just overloaded `==`? The answer lies in what's called
+//@ a *default implementation*. If you check out the documentation of `PartialEq` I linked above,
+//@ you will see that the trait actually provides two methods: `eq` to test equality, and `ne` to
+//@ test inequality. As you may have guessed, `!=` is wired to `ne`. The trait *definition* also
+//@ provides a default implementation of `ne` to be the negation of `eq`. Hence you can just
+//@ provide `eq`, and `!=` will work fine. Or, if you have a more efficient way of deciding
+//@ inequality, you can provide `ne` for your type yourself.