]> git.ralfj.de Git - rust-101.git/blobdiff - src/part08.rs
run tests on solutions; tune CSS for wider text
[rust-101.git] / src / part08.rs
index 558bd628d55a68479e456424e4ebffc38937ce46..e01a35b08f8e25114716e7f3d5fe018649b0cf4a 100644 (file)
@@ -1,66 +1,41 @@
-use std::cmp;
-use std::ops;
-use std::fmt;
-use part05::BigInt;
-
-impl PartialEq for BigInt {
-    fn eq(&self, other: &BigInt) -> bool {
-        debug_assert!(self.test_invariant() && other.test_invariant());
-        self.data == other.data
-    }
-}
-
-fn call_eq() {
-    let b1 = BigInt::new(13);
-    let b2 = BigInt::new(37);
-    println!("b1 == b1: {} ; b1 == b2: {}; b1 != b2: {}", b1 == b1, b1 == b2, b1 != b2);
-}
-
-
-impl fmt::Debug for BigInt {
-    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
-        self.data.fmt(f)
-    }
-}
-
-
-
-impl BigInt {
-    pub fn inc(&mut self, mut by: u64) {
-        panic!("Not yet implemented.");
-    }
-}
-
-
-#[test]
-fn test_inc() {
-    let mut b = BigInt::new(1337);
-    b.inc(1337);
-    assert!(b == BigInt::new(1337 + 1337));
+// Rust-101, Part 08: Associated Types, Modules
+// ============================================
 
-    b = BigInt::new(0);
-    assert_eq!(b, BigInt::from_vec(vec![0]));
-    b.inc(1 << 63);
-    assert_eq!(b, BigInt::from_vec(vec![1 << 63]));
-    b.inc(1 << 63);
-    assert_eq!(b, BigInt::from_vec(vec![0, 1]));
-    b.inc(1 << 63);
-    assert_eq!(b, BigInt::from_vec(vec![1 << 63, 1]));
-    b.inc(1 << 63);
-    assert_eq!(b, BigInt::from_vec(vec![0, 2]));
-}
+use std::{cmp,ops};
+use part05::BigInt;
 
+//@ As our next goal, let us implement addition for our `BigInt`. The main issue here will be dealing with the overflow.
+//@ First of all, we will have to detect when an overflow happens. This is stored in a so-called *carry* bit, and we have to carry this
+//@ information on to the next pair of digits we add. The core primitive of addition therefore is to add two digits *and* a
+//@ carry, and to return the sum digit and the next carry.
 
-// Add with carry, returning the sum and the carry
+// So, let us write a function to "add with carry", and give it the appropriate type. Notice Rust's native support for pairs.
 fn overflowing_add(a: u64, b: u64, carry: bool) -> (u64, bool) {
+    //@ Rust's stanza on integer overflows may be a bit surprising: In general, when we write `a + b`, an overflow is
+    //@ considered an *error*. If you compile your program in debug mode, Rust will actually check for that error and panic
+    //@ the program in case of overflows. For performance reasons, no such checks are currently inserted for release builds.
+    //@ The reason for this is that many serious security vulnerabilities have been caused by integer overflows, so just assuming
+    //@ "per default" that they are intended is dangerous. <br/>
+    //@ If you explicitly *do* want an overflow to happen, you can call the `wrapping_add`
+    //@ function (see [the documentation](http://doc.rust-lang.org/stable/std/primitive.u64.html#method.wrapping_add),
+    //@ there are similar functions for other arithmetic operations). There are also similar functions
+    //@ `checked_add` etc. to enforce the overflow check.
     let sum = u64::wrapping_add(a, b);
+    // If an overflow happened, then the sum will be smaller than *both* summands. Without an overflow, of course, it will be
+    // at least as large as both of them. So, let's just pick one and check.
     if sum >= a {
-        panic!("First addition did not overflow. Not implemented.");
+        // The addition did not overflow. <br/>
+        // **Exercise 08.1**: Write the code to handle adding the carry in this case.
+        unimplemented!()
     } else {
-        panic!("First addition *did* overflow. Not implemented.");
+        // The addition *did* overflow. It is impossible for the addition of the carry
+        // to overflow again, as we are just adding 0 or 1.
+        (sum + if carry { 1 } else { 0 }, true)                     /*@*/
     }
 }
 
+// `overflow_add` is a sufficiently intricate function that a test case is justified.
+// This should also help you to check your solution of the exercise.
 /*#[test]*/
 fn test_overflowing_add() {
     assert_eq!(overflowing_add(10, 100, false), (110, false));
@@ -70,10 +45,106 @@ fn test_overflowing_add() {
     assert_eq!(overflowing_add(1 << 63, (1 << 63) -1 , true), (0, true));
 }
 
-impl ops::Add for BigInt {
+// ## Associated Types
+//@ Now we are equipped to write the addition function for `BigInt`. As you may have guessed, the `+` operator
+//@ is tied to a trait (`std::ops::Add`), which we are now going to implement for `BigInt`.
+//@ 
+//@ In general, addition need not be homogeneous: For example, we could add a vector (in 3-dimensional
+//@ space, say) to a point. So when implementing `Add` for a type, one has to specify the type of
+//@ the other operand. In this case, it will also be `BigInt` (and we could have left it away, since that's the default).
+impl ops::Add<BigInt> for BigInt {
+    //@ Besides static functions and methods, traits can contain *associated types*: This is a type
+    //@ chosen by every particular implementation of the trait. The methods of the trait can then
+    //@ refer to that type. In the case of addition, it is used to give the type of the result.
+    //@ (Also see the [documentation of `Add`](http://doc.rust-lang.org/stable/std/ops/trait.Add.html).)
+    //@ 
+    //@ In general, you can consider the two `BigInt` given above (in the `impl` line) *input* types of trait search: When
+    //@ `a + b` is invoked with `a` having type `T` and `b` having type `U`, Rust tries to find an implementation of `Add` for
+    //@ `T` where the right-hand type is `U`. The associated types, on the other hand, are *output* types: For every combination
+    //@ of input types, there's a particular result type chosen by the corresponding implementation of `Add`.
+
+    // Here, we choose the result type to be again `BigInt`.
     type Output = BigInt;
+
+    // Now we can write the actual function performing the addition.
     fn add(self, rhs: BigInt) -> Self::Output {
-        let mut result_vec:Vec<u64> = Vec::with_capacity(cmp::max(self.data.len(), rhs.data.len()));
-        panic!("Not yet implemented.");
+        // We know that the result will be *at least* as long as the longer of the two operands,
+        // so we can create a vector with sufficient capacity to avoid expensive reallocations.
+        let max_len = cmp::max(self.data.len(), rhs.data.len());
+        let mut result_vec:Vec<u64> = Vec::with_capacity(max_len);
+        let mut carry = false; /* the current carry bit */
+        for i in 0..max_len {
+            // Compute next digit and carry. Store the digit for the result, and the carry for later.
+            let lhs_val = if i < self.data.len() { self.data[i] } else { 0 };
+            let rhs_val = if i < rhs.data.len() { rhs.data[i] } else { 0 };
+            let (sum, new_carry) = overflowing_add(lhs_val, rhs_val, carry);    /*@*/
+            result_vec.push(sum);                                               /*@*/
+            carry = new_carry;                                                  /*@*/
+        }
+        // **Exercise 08.2**: Handle the final `carry`, and return the sum.
+        unimplemented!()
+    }
+}
+
+// ## Traits and borrowed types
+//@ If you inspect the addition function above closely, you will notice that it actually requires
+//@ *ownership* of its arguments: Both operands are consumed to produce the result. This is, of
+//@ course, in general not what we want. We'd rather like to be able to add two `&BigInt`.
+
+// Writing this out becomes a bit tedious, because trait implementations (unlike functions) require full explicit annotation
+// of lifetimes. Make sure you understand exactly what the following definition says.
+impl<'a, 'b> ops::Add<&'a BigInt> for &'b BigInt {
+    type Output = BigInt;
+    fn add(self, rhs: &'a BigInt) -> Self::Output {
+        // **Exercise 08.3**: Implement this function.
+        unimplemented!()
     }
 }
+
+// ## Modules
+//@ As you learned, tests can be written right in the middle of your development in Rust. However, it is
+//@ considered good style to bundle all tests together. This is particularly useful in cases where
+//@ you wrote utility functions for the tests, that no other code should use.
+
+// Rust calls a bunch of definitions that are grouped together a *module*. You can put definitions in a submodule as follows.
+mod my_mod {
+    type MyType = i32;
+    fn my_fun() -> MyType { 42 }
+}
+//@ As already mentioned, outside of the module, only those items declared public with `pub` may be used. Submodules can access
+//@ everything defined in their parents. Modules themselves are also hidden from the outside per default, and can be made public
+//@ with `pub`. When you use an identifier (or, more general, a *path* like `mod1::submod::name`), it is interpreted as being
+//@ relative to the current module. So, for example, to access `overflowing_add` from within `my_mod`, you would have to give a more
+//@ explicit path by writing `super::overflowing_add`, which tells Rust to look in the parent module. 
+//@ 
+//@ You can make names from other modules available locally with `use`. Per default, `use` works globally, so e.g.
+//@ `use std;` imports the *global* name `std`. By adding `super::` or `self::` to the beginning of the path, you make it relative
+//@ to the parent or current module, respectively. (You can also explicitly construct an absolute path by starting it with `::`,
+//@ e.g., `::std::cmp::min`). You can say `pub use path;` to simultaneously *import* names and make them publicly available to others.
+//@ Finally, you can import all public items of a module at once with `use module::*;`.
+//@ 
+//@ Modules can be put into separate files with the syntax `mod name;`. To explain this, let me take a small detour through
+//@ the Rust compilation process. Cargo starts by invoking`rustc` on the file `src/lib.rs` or `src/main.rs`, depending on whether
+//@ you compile an application or a library. When `rustc` encounters a `mod name;`, it looks for the files `name.rs` and
+//@ `name/mod.rs` and goes on compiling there. (It is an error for both of them to exist). You can think of the contents of the
+//@ file being embedded at this place. However, only the file where compilation started, and files `name/mod.rs` can load modules
+//@ from other files. This ensures that the directory structure mirrors the structure of the modules, with `mod.rs`, `lib.rs`
+//@ and `main.rs` representing a directory or crate itself (similar to, e.g., `__init__.py` in Python).
+
+// For the purpose of testing, one typically introduces a module called `tests` and tells the compiler
+// (by means of the `cfg` attribute) to only compile this module for tests.
+#[cfg(test)]
+mod tests {
+    //@ If we added some functions here that are useful for testing, Rust would not bother compiling
+    //@ them when you just build your program for normal use. Other than that, tests work as usually.
+    #[test]
+    fn test_add() {
+        let b1 = BigInt::new(1 << 32);
+        let b2 = BigInt::from_vec(vec![0, 1]);
+
+        assert_eq!(&b1 + &b2, BigInt::from_vec(vec![1 << 32, 1]));
+        // **Exercise 08.4**: Add some more testcases.
+    }
+}
+
+//@ [index](main.html) | [previous](part07.html) | [next](main.html)