// ## Big Numbers
pub struct BigInt {
- pub data: Vec<u64>,
+ pub data: Vec<u64>, // least significant digit first, no trailing zeros
}
// Now that we fixed the data representation, we can start implementing methods on it.
impl BigInt {
pub fn new(x: u64) -> Self {
if x == 0 {
- BigInt { data: vec![] }
+ unimplemented!()
} else {
unimplemented!()
}
}
// We can convert any vector of digits into a number, by removing trailing zeros. The `mut`
- // declaration for `v` here is just like the one in `let mut ...`, it says that we will locally
- // change the vector `v`.
+ // declaration for `v` here is just like the one in `let mut ...`: We completely own `v`, but Rust
+ // still asks us to make our intention of modifying it explicit. This `mut` is *not* part of the
+ // type of `from_vec` - the caller has to give up ownership of `v` anyway, so they don't care anymore
+ // what you do to it.
//
// **Exercise 05.1**: Implement this function.
//
- // *Hint*: You can use `pop()` to remove the last element of a vector.
+ // *Hint*: You can use `pop` to remove the last element of a vector.
pub fn from_vec(mut v: Vec<u64>) -> Self {
unimplemented!()
}
}
// **Exercise 05.2**: Write some more functions on `BigInt`. What about a function that returns the number of
-// digits? The number of non-zero digits? The smallest/largest digit?
+// digits? The number of non-zero digits? The smallest/largest digit? Of course, these should all just borrow `self`.
// ## Mutation + aliasing considered harmful (part 2)
enum Variant {