-//@ mechanism, providing two functions: Registering a new callback, and calling all registered callbacks. There will be two
-//@ versions, so to avoid clashes of names, we put them into modules.
-mod callbacks {
- //@ First of all, we need to find a way to store the callbacks. Clearly, there will be a `Vec` involved, so that we can
- //@ always grow the number of registered callbacks. A callback will be a closure, i.e., something implementing
- //@ `FnMut(i32)` (we want to call this multiple times, so clearly `FnOnce` would be no good). So our first attempt may be the following.
- // For now, we just decide that the callbacks have an argument of type `i32`.
- struct CallbacksV1<F: FnMut(i32)> {
- callbacks: Vec<F>,
- }
- //@ However, this will not work. Remember how the "type" of a closure is specific to the environment of captured variables. Different closures
- //@ all implementing `FnMut(i32)` may have different types. However, a `Vec<F>` is a *uniformly typed* vector.
-
- //@ We will thus need a way to store things of *different* types in the same vector. We know all these types implement `FnMut(i32)`. For this scenario,
- //@ Rust provides *trait objects*: The truth is, `FnMut(i32)` is not just a trait. It is also a type, that can be given to anything implementing
- //@ this trait. So, we may write the following.
- /* struct CallbacksV2 {
- callbacks: Vec<FnMut(i32)>,
- } */
- //@ But, Rust complains about this definition. It says something about "Sized". What's the trouble? See, for many things we want to do, it is crucial that
- //@ Rust knows the precise, fixed size of the type - that is, how large this type will be when represented in memory. For example, for a `Vec`, the
- //@ elements are stored one right after the other. How should that be possible, without a fixed size? The trouble is, `FnMut(i32)` could be of any size.
- //@ We don't know how large that "type that implemenets `FnMut(i32)`" is. Rust calls this an *unsized* type. Whenever we introduce a type variable, Rust
- //@ will implicitly add a bound to that variable, demanding that it is sized. That's why we did not have to worry about this so far. <br/>
- //@ You can opt-out of this implicit bound by saying `T: ?Sized`. Then `T` may or may not be sized.
-
- //@ So, what can we do, if we can't store the callbacks in a vector? We can put them in a box. Semantically, `Box<T>` is a lot like `T`: You fully own
- //@ the data stored there. On the machine, however, `Box<T>` is a *pointer* to `T`. It is a lot like `std::unique_ptr` in C++. In our current example,
- //@ the important bit is that since it's a pointer, `T` can be unsized, but `Box<T>` itself will always be sized. So we can put it in a `Vec`.
- pub struct Callbacks {
- callbacks: Vec<Box<FnMut(i32)>>,
- }
-
- impl Callbacks {
- // Now we can provide some functions. The constructor should be straight-forward.
- pub fn new() -> Self {
- Callbacks { callbacks: Vec::new() } /*@*/
- }
-
- // Registration simply stores the callback.
- pub fn register(&mut self, callback: Box<FnMut(i32)>) {
- self.callbacks.push(callback); /*@*/
- }
-
- // And here we call all the stored callbacks.
- pub fn call(&mut self, val: i32) {
- // Since they are of type `FnMut`, we need to mutably iterate. Notice that boxes dereference implicitly.
- for callback in self.callbacks.iter_mut() {
- callback(val); /*@*/
- }
- }
- }
-
- // Now we are ready for the demo.
- pub fn demo(c: &mut Callbacks) {
- c.register(Box::new(|val| println!("Callback 1: {}", val)));
- c.call(0);
-
- //@ We can even register callbacks that modify their environment. Rust will again attempt to borrow `count`. However,
- //@ that doesn't work out this time: Since we want to put this thing in a `Box`, it could live longer than the function
- //@ we are in. Then the borrow of `count` would become invalid. We have to explicitly tell Rust to `move` ownership of the
- //@ variable into the closure. Its environment will then contain a `usize` rather than a `&mut uszie`, and have
- //@ no effect on this local variable anymore.
- let mut count: usize = 0;
- c.register(Box::new(move |val| { count = count+1; println!("Callback 2, {}. time: {}", count, val); } ));
- c.call(1); c.call(2);
- }