//@ `[T]` is the type of an (unsized) *array*, with elements of type `T`. All this means is that there's a contiguous
//@ region of memory, where a bunch of `T` are stored. How many? We can't tell! This is an unsized type. Just like for
//@ trait objects, this means we can only operate on pointers to that type, and these pointers will carry the missing
-//@ information - namely, the length. Such a pointer is called a *slice*. As we will see, a slice can be split.
-//@ Our function can thus take a borrowed slice, and promise to sort all elements in there.
+//@ information - namely, the length (they will be *fat pointers*). Such a reference to an array is called a *slice*. As we will see, a slice can be split.
+//@ Our function can thus take a mutable slice, and promise to sort all elements in there.
pub fn sort<T: PartialOrd>(data: &mut [T]) {
if data.len() < 2 { return; }
// Finally, we split our slice to sort the two halves. The nice part about slices is that splitting them is cheap:
//@ They are just a pointer to a start address, and a length. We can thus get two pointers, one at the beginning and
//@ one in the middle, and set the lengths appropriately such that they don't overlap. This is what `split_at_mut` does.
- //@ Since the two slices don't overlap, there is no aliasing and we can have them both mutably borrowed.
+ //@ Since the two slices don't overlap, there is no aliasing and we can have both of them as unique, mutable slices.
let (part1, part2) = data.split_at_mut(lpos);
//@ The index operation can not only be used to address certain elements, it can also be used for *slicing*: Giving a range
//@ of indices, and obtaining an appropriate part of the slice we started with. Here, we remove the last element from
//@ encoded string, that is, a bunch of bytes in memory (`[u8]`) that are valid according of UTF-8. `str` is unsized. `&str`
//@ stores the address of the character data, and their length. String literals like "this one" are
//@ of type `&'static str`: They point right to the constant section of the binary, so
- //@ the borrow is valid for the entire program. The bytes pointed to by `pattern`, on the other hand, are owned by someone else,
- //@ so we call `to_string` on it to copy the string data into a buffer on the heap owned by a String we own.
+ //@ the reference is valid for the entire program. The bytes pointed to by `pattern`, on the other hand, are owned by someone else,
+ //@ and we call `to_string` on it to copy the string data into a buffer on the heap that we own.
let mode = if count {
OutputMode::Count
} else if sort {