-//@ The little demo above showed that concurrency in Rust has a fairly simple API. Considering Rust has closures,
-//@ that should not be entirely surprising. However, as it turns out, Rust goes well beyond this and actually ensures
-//@ the absence of data races. <br/>
-//@ A data race is typically defined as having two concurrent, unsynchronized
-//@ accesses to the same memory location, at least one of which is a write. In other words, a data race is mutation in
-//@ the presence of aliasing, which Rust reliably rules out! It turns out that the same mechanism that makes our single-threaded
-//@ programs memory safe, and that prevents us from invalidating iterators, also helps secure our multi-threaded code against
-//@ data races. For example, notice how `read_files` sends a `String` to `filter_lines`. At run-time, only the pointer to
-//@ the character data will actually be moved around (just like when a `String` is passed to a function with full ownership). However,
-//@ `read_files` has to *give up* ownership of the string to perform `send`, to it is impossible for an outstanding borrow to
-//@ still be around. After it sent the string to the other side, `read_files` has no pointer into the string content
-//@ anymore, and hence no way to race on the data with someone else.
+//@ The little demo above showed that concurrency in Rust has a fairly simple API. Considering Rust
+//@ has closures, that should not be entirely surprising. However, as it turns out, Rust goes well
+//@ beyond this and actually ensures the absence of data races. <br/>
+//@ A data race is typically defined as having two concurrent, unsynchronized accesses to the same
+//@ memory location, at least one of which is a write. In other words, a data race is mutation in
+//@ the presence of aliasing, which Rust reliably rules out! It turns out that the same mechanism
+//@ that makes our single-threaded programs memory safe, and that prevents us from invalidating
+//@ iterators, also helps secure our multi-threaded code against data races. For example, notice
+//@ how `read_files` sends a `String` to `filter_lines`.
+//@ At run-time, only the pointer to the character data will actually be moved around (just like
+//@ when a `String` is passed to a function with full ownership). However, `read_files` has to
+//@ *give up* ownership of the string to perform `send`, to it is impossible for the string to
+//@ still be borrowed. After it sent the string to the other side, `read_files` has no pointer into
+//@ the string content anymore, and hence no way to race on the data with someone else.