// Finally, we split our slice to sort the two halves. The nice part about slices is that splitting them is cheap:
//@ They are just a pointer to a start address, and a length. We can thus get two pointers, one at the beginning and
//@ one in the middle, and set the lengths appropriately such that they don't overlap. This is what `split_at_mut` does.
- //@ Since the two slices don't overlap, there is no aliasing and we can have both of them as exclusive, mutable slices.
+ //@ Since the two slices don't overlap, there is no aliasing and we can have both of them as unique, mutable slices.
let (part1, part2) = data.split_at_mut(lpos);
//@ The index operation can not only be used to address certain elements, it can also be used for *slicing*: Giving a range
//@ of indices, and obtaining an appropriate part of the slice we started with. Here, we remove the last element from
// the pattern to regular-expression mode, and change `filter_lines` to honor this option. The documentation of regex is available from its crates.io site.
// (You won't be able to use the `regex!` macro if you are on the stable or beta channel of Rust. But it wouldn't help for our use-case anyway.)
-//@ [index](main.html) | [previous](part13.html) | [raw source](https://www.ralfj.de/git/rust-101.git/blob_plain/HEAD:/workspace/src/part14.rs) | [next](part15.html)
+//@ [index](main.html) | [previous](part13.html) | [raw source](workspace/src/part14.rs) | [next](part15.html)