part08.rs lines shortened
[rust-101.git] / src / part05.rs
index f031f09960934a7f407d32e7c11c3019622bd3ed..6abfe0cbc3894285084ba34f7e65a61255553abb 100644 (file)
-// Rust-101, Part 05: Clone, Copy
-// ==============================
+// Rust-101, Part 05: Clone
+// ========================
 
 
-use std::cmp;
-use std::ops;
+// ## Big Numbers
 
 
-// In the course of the next few parts, we are going to build a data-structure for
-// computations with *bug* numbers. We would like to not have an upper bound
-// to how large these numbers can get, with the memory of the machine being the
-// only limit.
-// 
-// We start by deciding how to represent such big numbers. One possibility here is
-// to use a vector of "small" numbers, which we will then consider the "digits"
-// of the big number. This is like "1337" being a vector of 4 small numbers (1, 3, 3, 7),
-// except that we will use `u64` as type of our base numbers. Now we just have to decide
-// the order in which we store numbers. I decided that we will store the least significant
-// digit first. This means that "1337" would actually become (7, 3, 3, 1).<br/>
-// Finally, we declare that there must not be any trailing zeros (corresponding to
-// useless leading zeros in our usual way of writing numbers). This is to ensure that
-// the same number can only be stored in one way.
+//@ In the course of the next few parts, we are going to build a data-structure for computations
+//@ with *big* numbers. We would like to not have an upper bound to how large these numbers can
+//@ get, with the memory of the machine being the only limit.
+//@ 
+//@ We start by deciding how to represent such big numbers. One possibility here is to use a vector
+//@ "digits" of the number. This is like "1337" being a vector of four digits (1, 3, 3, 7), except
+//@ that we will use `u64` as type of our digits, meaning we have 2^64 individual digits. Now we
+//@ just have to decide the order in which we store numbers. I decided that we will store the least
+//@ significant digit first. This means that "1337" would actually become (7, 3, 3, 1). <br/>
+//@ Finally, we declare that there must not be any trailing zeros (corresponding to
+//@ useless leading zeros in our usual way of writing numbers). This is to ensure that
+//@ the same number can only be stored in one way.
 
 
-// To write this down in Rust, we use a `struct`, which is a lot like structs in C:
-// Just a collection of a bunch of named fields. Every field can be private to the current module
-// (which is the default), or public (which would be indicated by a `pub` in front of the name).
-// For the sake of the tutorial, we make `dat` public - otherwise, the next parts of this
-// course could not work on `BigInt`s. Of course, in a real program, one would make the field
-// private to ensure that the invariant (no trailing zeros) is maintained.
+//@ To write this down in Rust, we use a `struct`, which is a lot like structs in C:
+//@ Just a bunch of named fields. Every field can be private to the current module (which is the
+//@ default), or public (which is indicated by a `pub` in front of the name). For the sake of the
+//@ tutorial, we make `data` public - otherwise, the next parts of this course could not work on
+//@ `BigInt`s. Of course, in a real program, one would make the field private to ensure that the
+//@ invariant (no trailing zeros) is maintained.
 pub struct BigInt {
 pub struct BigInt {
-    pub data: Vec<u64>,
+    pub data: Vec<u64>, // least significant digit first, no trailing zeros
 }
 
 // Now that we fixed the data representation, we can start implementing methods on it.
 impl BigInt {
 }
 
 // Now that we fixed the data representation, we can start implementing methods on it.
 impl BigInt {
-    // Let's start with a constructor, creating a `BigInt` from an ordinary integer.
-    // To create an instance of a struct, we write its name followed by a list of
-    // fields and initial values assigned to them.
+    //@ Let's start with a constructor, creating a `BigInt` from an ordinary integer.
+    //@ To create an instance of a struct, we write its name followed by a list of
+    //@ fields and initial values assigned to them.
     pub fn new(x: u64) -> Self {
         if x == 0 {
     pub fn new(x: u64) -> Self {
         if x == 0 {
-            BigInt { data: vec![] }
+            BigInt { data: vec![] }                                 /*@*/
         } else {
         } else {
-            BigInt { data: vec![x] }
+            BigInt { data: vec![x] }                                /*@*/
         }
     }
 
         }
     }
 
-    // It can often be useful to encode the invariant of a data-structure in code, so here
-    // is a check that detects useless trailing zeros.
+    //@ It can often be useful to encode the invariant of a data-structure in code, so here
+    //@ is a check that detects useless trailing zeros.
     pub fn test_invariant(&self) -> bool {
         if self.data.len() == 0 {
             true
         } else {
     pub fn test_invariant(&self) -> bool {
         if self.data.len() == 0 {
             true
         } else {
-            self.data[self.data.len() - 1] != 0
+            self.data[self.data.len() - 1] != 0                     /*@*/
         }
     }
 
         }
     }
 
-    // We can convert any vector of digits into a number, by removing trailing zeros. The `mut`
-    // declaration for `v` here is just like the one in `let mut ...`, it says that we will locally
-    // change the vector `v`. In this case, we need to make that annotation to be able to call `pop`
-    // on `v`.
+    // We can convert any little-endian vector of digits (i.e., least-significant digit first) into
+    // a number, by removing trailing zeros. The `mut` declaration for `v` here is just like the
+    // one in `let mut ...`: We completely own `v`, but Rust still asks us to make our intention of
+    // modifying it explicit. This `mut` is *not* part of the type of `from_vec` - the caller has
+    // to give up ownership of `v` anyway, so they don't care anymore what you do to it.
+    // 
+    // **Exercise 05.1**: Implement this function.
+    // 
+    // *Hint*: You can use `pop` to remove the last element of a vector.
     pub fn from_vec(mut v: Vec<u64>) -> Self {
     pub fn from_vec(mut v: Vec<u64>) -> Self {
-        while v.len() > 0 && v[v.len()-1] == 0 {
-            v.pop();
-        }
-        BigInt { data: v }
+        unimplemented!()
     }
 }
 
     }
 }
 
-// If you have a close look at the type of `BigInt::from_vec`, you will notice that it
-// consumes the vector `v`. The caller hence loses access. There is however something
-// we can do if we don't want that to happen: We can explicitly `clone` the vector,
-// which means that a full (or *deep*) copy will be performed. Technically,
-// `clone` takes a borrowed vector, and returns a fully owned one.
+// ## Cloning
+//@ If you take a close look at the type of `BigInt::from_vec`, you will notice that it consumes
+//@ the vector `v`. The caller hence loses access to its vector. However, there is something we can
+//@ do if we don't want that to happen: We can explicitly `clone` the vector, which means that a
+//@ full (or *deep*) copy will be performed. Technically, `clone` takes a borrowed vector in the
+//@ form of a shared reference, and returns a fully owned one.
 fn clone_demo() {
     let v = vec![0,1 << 16];
 fn clone_demo() {
     let v = vec![0,1 << 16];
-    let b1 = BigInt::from_vec(v.clone());
+    let b1 = BigInt::from_vec((&v).clone());
     let b2 = BigInt::from_vec(v);
 }
     let b2 = BigInt::from_vec(v);
 }
+//@ Rust has special treatment for methods that borrow their `self` argument (like `clone`, or
+//@ like `test_invariant` above): It is not necessary to explicitly borrow the receiver of the
+//@ method. Hence you could replace `(&v).clone()` by `v.clone()` above. Just try it!
 
 
-// To be clonable is a property of a type, and as such, naturally expressed with a trait.
-// In fact, Rust already comes with a trait `Clone` for exactly this purpose. We can hence
-// make our `BigInt` clonable as well.
+//@ To be clonable is a property of a type, and as such, naturally expressed with a trait.
+//@ In fact, Rust already comes with a trait `Clone` for exactly this purpose. We can hence
+//@ make our `BigInt` clonable as well.
 impl Clone for BigInt {
     fn clone(&self) -> Self {
 impl Clone for BigInt {
     fn clone(&self) -> Self {
-        BigInt { data: self.data.clone() }
+        BigInt { data: self.data.clone() }                          /*@*/
     }
 }
     }
 }
-// Making a type clonable is such a common exercise that Rust can even help you doing it:
-// If you add `#[derive(Clone)]' right in front of the definition of `BigInt`, Rust will
-// generate an implementation of `clone` that simply clones all the fields. Try it!
+//@ Making a type clonable is such a common exercise that Rust can even help you doing it:
+//@ If you add `#[derive(Clone)]` right in front of the definition of `BigInt`, Rust will
+//@ generate an implementation of `Clone` that simply clones all the fields. Try it!
+//@ These `#[...]` annotations at types (and functions, modules, crates) are called *attributes*.
+//@ We will see some more examples of attributes later.
 
 
-// We can also make the type `SomethingOrNothing<T>` implement `Clone`. However, that
-// can only work if `T` is `Clone`! So we have to add this bound to `T` when we introduce
-// the type variable.
+// We can also make the type `SomethingOrNothing<T>` implement `Clone`.
+//@ However, that can only work if `T` is `Clone`! So we have to add this bound to `T` when we
+//@ introduce the type variable.
 use part02::{SomethingOrNothing,Something,Nothing};
 impl<T: Clone> Clone for SomethingOrNothing<T> {
     fn clone(&self) -> Self {
 use part02::{SomethingOrNothing,Something,Nothing};
 impl<T: Clone> Clone for SomethingOrNothing<T> {
     fn clone(&self) -> Self {
-        match *self {
-            Nothing => Nothing,
-            // In the second arm of the match, we need to talk about the value `v`
-            // that's stored in `self`. However, if we would write the pattern as
-            // `Something(v)`, that would indicate that we *own* `v` in the code
-            // after the arrow. That can't work though, we have to leave `v` owned by
-            // whoever called us - after all, we don't even own `self`, we just borrowed it.
-            // By writing `Something(ref v)`, we just borrow `v` for the duration of the match
-            // arm. That's good enough for cloning it.
-            Something(ref v) => Something(v.clone()),
-        }
+        match *self {                                               /*@*/
+            Nothing => Nothing,                                     /*@*/
+            //@ In the second arm of the match, we need to talk about the value `v`
+            //@ that's stored in `self`. However, if we were to write the pattern as
+            //@ `Something(v)`, that would indicate that we *own* `v` in the code
+            //@ after the arrow. That can't work though, we have to leave `v` owned by
+            //@ whoever called us - after all, we don't even own `self`, we just borrowed it.
+            //@ By writing `Something(ref v)`, we borrow `v` for the duration of the match
+            //@ arm. That's good enough for cloning it.
+            Something(ref v) => Something(v.clone()),               /*@*/
+        }                                                           /*@*/
     }
 }
     }
 }
-// Again, Rust will generate this implementation automatically if you add
-// `#[derive(Clone)]` right before the definition of `SomethingOrNothing`.
+//@ Again, Rust will generate this implementation automatically if you add
+//@ `#[derive(Clone)]` right before the definition of `SomethingOrNothing`.
 
 
-// With `BigInt` being about numbers, we should be able to write a version of `vec_min`
-// that computes the minimum of a list of `BigInt`. We start by writing `min` for
-// `BigInt`. Now our assumption of having no trailing zeros comes in handy!
-impl BigInt {
-    fn min(self, other: Self) -> Self {
-        // Just to be sure, we first check that both operands actually satisfy our invariant.
-        // `debug_assert!` is a macro that checks that its argument (must be of type `bool`)
-        // is `true`, and panics otherwise. It gets removed in release builds, which you do with
-        // `cargo build --release`.
-        // 
-        // If you carefully check the type of `BigInt::test_invariant`, you may be surprised that
-        // we can call the function this way. Doesn't it take `self` in borrowed form? Indeed,
-        // the explicit way to do that would be to call `(&other).test_invariant()`. However, the
-        // `self` argument of a method is treated specially by Rust, and borrowing happens automatically here.
-        debug_assert!(self.test_invariant() && other.test_invariant());
-        // If the lengths of the two numbers differ, we already know which is larger.
-        if self.data.len() < other.data.len() {
-            self
-        } else if self.data.len() > other.data.len() {
-            other
-        } else {
-            // **Exercise 05.1**: Fill in this code.
-            panic!("Not yet implemented.");
-        }
-    }
-}
+// **Exercise 05.2**: Write some more functions on `BigInt`. What about a function that returns the
+// number of digits? The number of non-zero digits? The smallest/largest digit? Of course, these
+// should all take `self` as a shared reference (i.e., in borrowed form).
 
 
-// Now we can write `vec_min`. In order to make it type-check, we have to write it as follows.
-fn vec_min(v: &Vec<BigInt>) -> Option<BigInt> {
-    let mut min: Option<BigInt> = None;
-    for e in v {
-        min = Some(match min {
-            None => e.clone(),
-            Some(n) => e.clone().min(n)
-        });
+// ## Mutation + aliasing considered harmful (part 2)
+//@ Now that we know how to create references to contents of an `enum` (like `v` above), there's
+//@ another example we can look at for why we have to rule out mutation in the presence of
+//@ aliasing. First, we define an `enum` that can hold either a number, or a string.
+enum Variant {
+    Number(i32),
+    Text(String),
+}
+//@ Now consider the following piece of code. Like above, `n` will be a reference to a part of
+//@ `var`, and since we wrote `ref mut`, the reference will be unique and mutable. In other words,
+//@ right after the match, `ptr` points to the number that's stored in `var`, where `var` is a
+//@ `Number`. Remember that `_` means "we don't care".
+fn work_on_variant(mut var: Variant, text: String) {
+    let mut ptr: &mut i32;
+    match var {
+        Variant::Number(ref mut n) => ptr = n,
+        Variant::Text(_) => return,
     }
     }
-    min
+    /* var = Variant::Text(text); */                                /* BAD! */
+    *ptr = 1337;
 }
 }
-// Now, what's happening here? Why do we have to write `clone()`, and why did we not
-// have to write that in our previous version?
-// 
-// The answer is already hidden in the type of `vec_min`: `v` is just borrowed, but
-// the Option<BigInt> that it returns is *owned*. We can't just return one
-// of the elements of `v`, as that would mean that it is no longer in the vector!
-// In our code, this comes up when we update the intermediate variable `min`, which
-// also has type `Option<BigInt>`. If you replace `e.clone()` in the `None` arm
-// with `*e`, Rust will complain "Cannot move out of borrowed content". That's because
-// `e` is a `&BigInt`. Assigning `min` to `*e` works just like a function call:
-// Ownership of the underlying data (in this case, the digits) is transferred from
-// the vector to `min`. But that's not allowed, since we must retain the vector
-// in its existing state. After cloning `e`, we own the copy that was created,
-// and hence we can store it in `min`.<br/>
-// Of course, making such a full copy is expensive, so we'd like to avoid it.
-// That's going to happen in the next part.
-// 
-// But before we go there, I should answer the second question I brought up above:
-// Why did our old `vec_min` work? We stored the minimal `i32` locally without
-// cloning, and Rust did not complain. That's because there isn't really much
-// of an "ownership" when it comes to types like `i32` or `bool`: If you move
-// the value from one place to another, then both instance are independent
-// and complete instances of their type. This is in stark contrast to types
-// like `Vec<i32>`, where merely moving the value results in both the old
-// and the new vector to point to the same underlying buffer.
-//
-// Rust calls types like `i32` that can be freely duplicated `Copy` types.
-// `Copy` is another trait, and it is implemented for the basic types of
-// the language. Remember how we defined the trait `Minimum` by writing
-// `trait Minimum : Copy { ...`? This tells Rust that every type that
-// implements `Minimum` must also implement `Copy`, and that's why Rust
-// accepted our generic `vec_min` in part 02.
-// 
-// Curiously, `Copy` is a trait that does not require any method to
-// be implemented. Implementing `Copy` is merely a semantic statement,
-// saying that the idea of ownership does not really apply to this type.
-// Traits without methods are called *marker traits*. We will see some
-// more examples of such traits later.
-// 
-// If you try to implement `Copy` for `BigInt`, you will notice that Rust
-// does not let you do that. A type can only be `Copy` if all its elements
-// are `Copy`, and that's not the case for `BigInt`. However, we can make
-// `SomethingOrNothing<T>` copy if `T` is `Copy`.
-impl<T: Copy> Copy for SomethingOrNothing<T>{}
-// Again, Rust can generate implementations of `Copy` automatically. If
-// you add `#[derive(Copy,Clone)]` right before the definition of `SomethingOrNothing`,
-// both `Copy` and `Clone` will automatically be implemented.
+//@ Now, imagine what would happen if we were permitted to also mutate `var`. We could, for
+//@ example, make it a `Text`. However, `ptr` still points to the old location! Hence `ptr` now
+//@ points somewhere into the representation of a `String`. By changing `ptr`, we manipulate the
+//@ string in completely unpredictable ways, and anything could happen if we were to use it again!
+//@ (Technically, the first field of a `String` is a pointer to its character data, so by
+//@ overwriting that pointer with an integer, we make it a completely invalid address. When the
+//@ destructor of `var` runs, it would try to deallocate that address, and Rust would eat your
+//@ laundry - or whatever.)  I hope this example clarifies why Rust has to rule out mutation in the
+//@ presence of aliasing *in general*, not just for the specific case of a buffer being
+//@ reallocated, and old pointers becoming hence invalid.
 
 
-// In closing this part, I'd like to give you another perspective on the
-// move semantics (i.e., ownership passing) that Rust applies, and how
-// `Copy` and `Clone` fit.<br/>
-// When Rust code is executed, passing a value (like `i32` or `Vec<i32>`)
-// to a function will always result in a shallow copy being performed: Rust
-// just copies the bytes representing that value, and considers itself done.
-// That's just like the default copy constructor in C++. Rust, however, will
-// consider this a destructive operation: After copying the bytes elsewhere,
-// the original value must no longer be used. After all, the two could not
-// share a pointer! If, however, you mark a type `Copy`, then Rust will *not*
-// consider a move destructive, and just like in C++, the old and new value
-// can happily coexist. Now, Rust does not allow to to overload the copy
-// constructor. This means that passing a value around will always be a fast
-// operation, no allocation or copying of large data of the heap will happen.
-// In the situations where you would write a copy constructor in C++ (and hence
-// incur a hidden cost on every copy of this type), you'd have the type *not*
-// implement `Copy`, but only `Clone`. This makes the cost explicit.
+//@ [index](main.html) | [previous](part04.html) | [raw source](workspace/src/part05.rs) |
+//@ [next](part06.html)