}
}
-// Now we can write `vec_min`. However, in order to make it type-check, we have to make a full (deep) copy of e
-// by calling `clone()`.
+// Now we can write `vec_min`.
+//@ However, in order to make it type-check, we have to make a full (deep) copy of e by calling `clone()`.
fn vec_min(v: &Vec<BigInt>) -> Option<BigInt> {
let mut min: Option<BigInt> = None;
for e in v {
//@ `e` is a `&BigInt`. Assigning `min = Some(*e)` works just like a function call: Ownership of the
//@ underlying data is transferred from where `e` borrows from to `min`. But that's not allowed, since
//@ we just borrowed `e`, so we cannot empty it! We can, however, call `clone()` on it. Then we own
-//@ the copy that was created, and hence we can store it in `min`.<br/>
+//@ the copy that was created, and hence we can store it in `min`. <br/>
//@ Of course, making such a full copy is expensive, so we'd like to avoid it. We'll some to that in the next part.
// ## `Copy` types
//@ ## An operational perspective
//@ Instead of looking at what happens "at the surface" (i.e., visible in Rust), one can also explain
-//@ ownership passing and how `Copy` and `Clone` fit in by looking at what happens on the machine.<br/>
+//@ ownership passing and how `Copy` and `Clone` fit in by looking at what happens on the machine. <br/>
//@ When Rust code is executed, passing a value (like `i32` or `Vec<i32>`) to a function will always
//@ result in a shallow copy being performed: Rust just copies the bytes representing that value, and
//@ considers itself done. That's just like the default copy constructor in C++. Rust, however, will