-// In the course of the next few parts, we are going to build a data-structure for computations with
-// *big* numbers. We would like to not have an upper bound to how large these numbers can get, with
-// the memory of the machine being the only limit.
-//
-// We start by deciding how to represent such big numbers. One possibility here is
-// to use a vector "digits" of the big number. This is like "1337" being a vector of four digits (1, 3, 3, 7),
-// except that we will use `u64` as type of our digits. Now we just have to decide
-// the order in which we store numbers. I decided that we will store the least significant
-// digit first. This means that "1337" would actually become (7, 3, 3, 1).<br/>
-// Finally, we declare that there must not be any trailing zeros (corresponding to
-// useless leading zeros in our usual way of writing numbers). This is to ensure that
-// the same number can only be stored in one way.
+//@ In the course of the next few parts, we are going to build a data-structure for computations with
+//@ *big* numbers. We would like to not have an upper bound to how large these numbers can get, with
+//@ the memory of the machine being the only limit.
+//@
+//@ We start by deciding how to represent such big numbers. One possibility here is
+//@ to use a vector "digits" of the number. This is like "1337" being a vector of four digits (1, 3, 3, 7),
+//@ except that we will use `u64` as type of our digits, meaning we have 2^64 individual digits. Now we just
+//@ have to decide the order in which we store numbers. I decided that we will store the least significant
+//@ digit first. This means that "1337" would actually become (7, 3, 3, 1). <br/>
+//@ Finally, we declare that there must not be any trailing zeros (corresponding to
+//@ useless leading zeros in our usual way of writing numbers). This is to ensure that
+//@ the same number can only be stored in one way.