Merge pull request #7 from leesper/master
[rust-101.git] / src / part15.rs
index 99eb3be10d2aa0ae96872c7c16e4c40d82e267ad..f60a481bfc7a3302f9bfe6f04f0695ab88746db5 100644 (file)
@@ -3,6 +3,7 @@
 
 use std::sync::{Arc, Mutex};
 use std::thread;
+use std::time::Duration;
 
 //@ We already saw that we can use `Arc` to share memory between threads. However, `Arc` can only provide *read-only*
 //@ access to memory: Since there is aliasing, Rust cannot, in general, permit mutation. To implement shared-memory
@@ -11,7 +12,7 @@ use std::thread;
 //@ which we already discussed in a single-threaded context in part 12.
 //@ 
 //@ ## `Mutex`
-//@ The most basic type for interior mutability that supports concurrency is [`Mutex<T>`](http://doc.rust-lang.org/stable/std/sync/struct.Mutex.html).
+//@ The most basic type for interior mutability that supports concurrency is [`Mutex<T>`](https://doc.rust-lang.org/stable/std/sync/struct.Mutex.html).
 //@ This type implements *critical sections* (or *locks*), but in a data-driven way: One has to specify
 //@ the type of the data that's protected by the mutex, and Rust ensures that the data is *only* accessed
 //@ through the mutex. In other words, "lock data, not code" is actually enforced by the type system, which
@@ -45,7 +46,7 @@ impl ConcurrentCounter {
         *counter = *counter + by;
         //@ At the end of the function, `counter` is dropped and the mutex is available again.
         //@ This can only happen when full ownership of the guard is given up. In particular, it is impossible for us
-        //@ to borrow some of its content, release the lock of the mutex, and subsequently access the protected data without holding
+        //@ to take a reference to some of its content, release the lock of the mutex, and subsequently access the protected data without holding
         //@ the lock. Enforcing the locking discipline is expressible in the Rust type system, so we don't have to worry
         //@ about data races *even though* we are mutating shared memory!
         //@ 
@@ -70,7 +71,7 @@ pub fn main() {
     let counter1 = counter.clone();
     let handle1 = thread::spawn(move || {
         for _ in 0..10 {
-            thread::sleep_ms(15);
+            thread::sleep(Duration::from_millis(15));
             counter1.increment(2);
         }
     });
@@ -79,14 +80,14 @@ pub fn main() {
     let counter2 = counter.clone();
     let handle2 = thread::spawn(move || {
         for _ in 0..10 {
-            thread::sleep_ms(20);
+            thread::sleep(Duration::from_millis(20));
             counter2.increment(3);
         }
     });
 
     // Now we watch the threads working on the counter.
     for _ in 0..50 {
-        thread::sleep_ms(5);
+        thread::sleep(Duration::from_millis(5));
         println!("Current value: {}", counter.get());
     }
 
@@ -103,9 +104,9 @@ pub fn main() {
 // the data inside the lock. Change the code above to do that. Try using `unwrap_or_else` for this job.
 
 //@ ## `RwLock`
-//@ Besides `Mutex`, there's also [`RwLock`](http://doc.rust-lang.org/stable/std/sync/struct.RwLock.html), which
+//@ Besides `Mutex`, there's also [`RwLock`](https://doc.rust-lang.org/stable/std/sync/struct.RwLock.html), which
 //@ provides two ways of locking: One that grants only read-only access, to any number of concurrent readers, and another one
-//@ for exclusive write access. Notice that this is the same pattern we already saw with shared vs. mutable borrows. Hence
+//@ for exclusive write access. Notice that this is the same pattern we already saw with shared vs. mutable references. Hence
 //@ another way of explaining `RwLock` is to say that it is like `RefCell`, but works even for concurrent access. Rather than
 //@ panicking when the data is already borrowed, `RwLock` will of course block the current thread until the lock is available.
 //@ In this view, `Mutex` is a stripped-down version of `RwLock` that does not distinguish readers and writers.
@@ -118,30 +119,30 @@ pub fn main() {
 //@ `RefCell` across multiple threads?
 //@ 
 //@ In part 13, we talked about types that are marked `Send` and thus can be moved to another thread. However, we did *not*
-//@ talk about the question whether a borrow is `Send`. For `&mut T`, the answer is: It is `Send` whenever `T` is send.
-//@ `&mut` allows moving values back and forth, it is even possible to [`swap`](http://doc.rust-lang.org/stable/std/mem/fn.swap.html)
-//@ the contents of two mutably borrowed values. So in terms of concurrency, sending a mutable borrow is very much like
+//@ talk about the question whether a reference is `Send`. For `&mut T`, the answer is: It is `Send` whenever `T` is send.
+//@ `&mut` allows moving values back and forth, it is even possible to [`swap`](https://doc.rust-lang.org/stable/std/mem/fn.swap.html)
+//@ the contents of two mutable references. So in terms of concurrency, sending a mutable, unique reference is very much like
 //@ sending full ownership, in the sense that it can be used to move the object to another thread.
 //@ 
-//@ But what about `&T`, a shared borrow? Without interior mutability, it would always be all-right to send such values.
+//@ But what about `&T`, a shared reference? Without interior mutability, it would always be all-right to send such values.
 //@ After all, no mutation can be performed, so there can be as many threads accessing the data as we like. In the
 //@ presence of interior mutability though, the story gets more complicated. Rust introduces another marker trait for
 //@ this purpose: `Sync`. A type `T` is `Sync` if and only if `&T` is `Send`. Just like `Send`, `Sync` has a default implementation
 //@ and is thus automatically implemented for a data-structure *if* all its members implement it.
 //@ 
-//@ Since `Arc` provides multiple threads with a shared borrow of its content, `Arc<T>` is only `Send` if `T` is `Sync`.
+//@ Since `Arc` provides multiple threads with a shared reference to its content, `Arc<T>` is only `Send` if `T` is `Sync`.
 //@ So if we had used `RefCell` above, which is *not* `Sync`, Rust would have caught that mistake. Notice however that
 //@ `RefCell` *is* `Send`: If ownership of the entire cell is moved to another thread, it is still not possible for several
 //@ threads to try to access the data at the same time.
 //@ 
-//@ Almost all the types we saw so far are `Sync`, with the exception of `Rc`. Remember that a shared borrow is good enough
-//@ for cloning, and we don't want other threads to clone our local `Rc`, so it must not be `Sync`. The rule of `Mutex`
-//@ is to enforce synchronization, so it should not be entirely surprising that `Mutex<T>` is `Send` *and* `Sync` provided that
-//@ `T` is `Send`.
+//@ Almost all the types we saw so far are `Sync`, with the exception of `Rc`. Remember that a shared reference is good enough
+//@ for cloning, and we don't want other threads to clone our local `Rc` (they would race for updating the reference count),
+//@ so it must not be `Sync`. The rule of `Mutex` is to enforce synchronization, so it should not be entirely surprising that
+//@ `Mutex<T>` is `Send` *and* `Sync` provided that `T` is `Send`.
 //@ 
 //@ You may be curious whether there is a type that's `Sync`, but not `Send`. There are indeed rather esoteric examples
 //@ of such types, but that's not a topic I want to go into. In case you are curious, there's a
 //@ [Rust RFC](https://github.com/rust-lang/rfcs/blob/master/text/0458-send-improvements.md), which contains a type `RcMut` that would be `Sync` and not `Send`.
 //@ You may also be interested in [this blog post](https://huonw.github.io/blog/2015/02/some-notes-on-send-and-sync/) on the topic.
 
-//@ [index](main.html) | [previous](part14.html) | [next](part16.html)
+//@ [index](main.html) | [previous](part14.html) | [raw source](https://www.ralfj.de/git/rust-101.git/blob_plain/HEAD:/workspace/src/part15.rs) | [next](part16.html)