use std::mem;
use std::marker::PhantomData;
-//@ As we saw, the rules Rust imposes to ensure memory safety can get us pretty far. A surprising amount of programming patterns
+//@ As we saw, the rules Rust imposes to ensure memory safety can get us pretty far. A large amount of programming patterns
//@ can be written within safe Rust, and, more importantly, library code like iterators or threads can make
//@ use of the type system to ensure some level of correctness beyond basic memory safety.
//@
//@ will be cases where it may be possible to satisfy the compiler, but only at the cost of some run-time overhead,
//@ as we saw with `RefCell` - overhead which may not be acceptable. In such a situation, it is possible to
//@ use *unsafe* Rust: That's a part of the language that is *known* to open the gate to invalid pointer access
-//@ and all other sorts of memory safety. It is typically disabled, guarded by the keyword `unsafe`. Of course,
-//@ `unsafe` also means "Here Be Dragons": You are on your own now.
-//@
+//@ and all other sorts of memory safety. Of course, `unsafe` also means "Here Be Dragons": You are on your own now. <br/>
//@ The goal in these cases is to confine unsafety to the local module. Types like `Rc` and `Vec` are implemented
//@ using unsafe Rust, but *using* them as we did is (believed to be) perfectly safe.
//@
//@ ## Unsafe Code
//@ As an example, let us write a doubly-linked list. Clearly, such a data-structure involves aliasing and mutation:
-//@ Every node in the list is pointed to by its left and right neighbor, but still we will want to modify the nodes
-//@ (either to change the value at that place, or to insert/delete nodes). We could now try some clever combination of
-//@ `Rc` and `RefCell`, but this would end up being quite annoying - and it would incur some over-head. For a low-level
-//@ data-structure like a doubly-linked list, it makes sense to implement an efficient version *once*, that is unsafe
-//@ internally, but that can be used without any risk by safe client code.
+//@ Every node in the list is pointed to by its left and right neighbor, but still we will want to modify the nodes. We
+//@ could now try some clever combination of `Rc` and `RefCell`, but this would end up being quite annoying - and it would
+//@ incur some overhead. For a low-level data-structure like a doubly-linked list, it makes sense to implement an efficient
+//@ version once, that is unsafe internally, but that can be used without any risk by safe client code.
//@ As usually, we start by defining the types. Everything is parameterized by the type `T` of the data stored in the list.
// A node of the list consists of the data, and two node pointers for the predecessor and successor.
// will own data of type `T`.
//@ The type `PhantomData<T>` does not actually store anything in memory - it has size zero. However, logically,
//@ Rust will consider a `T` to be present. In this case, Rust knows that data of type `T` may be dropped
-//@ whenever a `LinkedList<T>` is dropped. The checks involving destructors are pretty subtle, so it's always
-//@ a good idea to provide such extra information. In safe Rust, this can all be done automatically, but here,
-//@ we just have a `*mut Node<T>`, which Rust does not consider as actually owning the data it points to.
+//@ whenever a `LinkedList<T>` is dropped. Dropping has a lot of subtle checks to it, making sure that things can't go
+//@ wrong. For this to work, Rust needs to know which types could potentially be dropped. In safe Rust, this can all be inferred
+//@ automatically, but here, we just have a `*mut Node<T>`, and we need to tell Rust that we actually own such data and will drop it.
+//@ (For more of the glory details, see [this RFC](https://github.com/rust-lang/rfcs/blob/master/text/0769-sound-generic-drop.md).)
pub struct LinkedList<T> {
first: NodePtr<T>,
last: NodePtr<T>,
_marker: PhantomData<T>,
}
-//@ Before we get to the actual linked-list methods, we write two short helper functions converting between
-//@ mutable raw pointers, and owned pointers (aka `Box`). Both employ `mem::transmute`, which is Rust's
-//@ `reinterpret_cast`: It can convert anything to anything, by just re-interpreting the bytes. Clearly,
-//@ that's an unsafe operation and must only be used with great care. If at all possible, its use should be avoided. <br/>
+//@ Before we get to the actual linked-list methods, we write two short helper functions converting between mutable raw pointers,
+//@ and boxed data. Both employ `mem::transmute`, which can convert anything to anything, by just re-interpreting the bytes.
+//@ Clearly, that's an unsafe operation and must only be used with great care - or even better, not at all. Seriously.
+//@ If at all possible, you should never use `transmute`. <br/>
//@ We are making the assumption here that a `Box` and a raw pointer have the same representation in memory. In the future,
//@ Rust will [provide](http://doc.rust-lang.org/beta/alloc/boxed/struct.Box.html#method.from_raw) such [operations](http://doc.rust-lang.org/beta/alloc/boxed/struct.Box.html#method.into_raw) in the standard library, but the exact API is still being fleshed out.
//@ We declare `raw_into_box` to be an `unsafe` function, telling Rust that calling this function is not generally safe.
-//@ The caller will have to ensure that `r` is a valid pointer, and that nobody else has a pointer to this data.
+//@ This grants us the unsafe powers for the body of the function: We can dereference raw pointers, and - most importantly - we
+//@ can call unsafe functions. (There's a third power, related to mutable static variables, but we didn't talk about static variables
+//@ in the course, so that won't be relevant here.) <br/>
+//@ Here, the caller will have to ensure that `r` is a valid pointer, and that nobody else has a pointer to this data.
unsafe fn raw_into_box<T>(r: *mut T) -> Box<T> {
mem::transmute(r)
}
-//@ The case is slightly different for `box_into_raw`: Converting a `Box` to a raw pointer is always safe. I just drops some
-//@ information. Hence we keep the function itself safe, and use an *unsafe block* within the function. This is an (unchecked)
-//@ promise to the Rust compiler, saying that a safe invocation of `box_into_raw` cannot go wrong.
+//@ The case is slightly different for `box_into_raw`: Converting a `Box` to a raw pointer is always safe. It just drops some information.
+//@ Hence we keep the function itself safe, and use an *unsafe block* within the function. This is an (unchecked) promise to the Rust
+//@ compiler, saying that a safe invocation of `box_into_raw` cannot go wrong. We also have the unsafe powers in the unsafe block.
fn box_into_raw<T>(b: Box<T>) -> *mut T {
unsafe { mem::transmute(b) }
}
// This function adds a new node to the end of the list.
pub fn push_back(&mut self, t: T) {
// Create the new node, and make it a raw pointer.
- //@ Calling `box_into_raw` gives up ownership of the box, which is crucial: We don't want the
- //@ memory that it points to to be deallocated!
+ //@ Calling `box_into_raw` gives up ownership of the box, which is crucial: We don't want the memory that it points to to be deallocated!
let new = Box::new( Node { data: t, next: ptr::null_mut(), prev: self.last } );
let new = box_into_raw(new);
// Update other points to this node.
//@ The linked list we wrote is already working quite nicely, but there is one problem: When the list is dropped,
//@ nobody bothers to deallocate the remaining nodes. Even worse, if `T` itself has a destructor that needs to
//@ clean up, it is not called for the element remaining in the list. We need to take care of that ourselves.
-//@
+
//@ In Rust, adding a destructor for a type is done by implementing the `Drop` trait. This is a very special trait.
//@ It can only be implemented for *nominal types*, i.e., you cannot implement `Drop` for `&mut T`. You also cannot
//@ restrict the type and lifetime parameters further than the type does - the `Drop` implementation has to apply to *all* instances