}
}
- /// Construct a BigInt from a vector of 64-bit "digits", with the last significant digit being first
+ /// Construct a BigInt from a vector of 64-bit "digits", with the last significant digit being first. Solution to 05.1.
pub fn from_vec(mut v: Vec<u64>) -> Self {
- // remove trailing zeroes
+ // remove trailing zeros
while v.len() > 0 && v[v.len()-1] == 0 {
v.pop();
}
BigInt { data: v }
}
+ /// Increments the number by 1.
+ pub fn inc1(&mut self) {
+ let mut idx = 0;
+ // This loop adds "(1 << idx)". If there is no more carry, we leave.
+ while idx < self.data.len() {
+ let cur = self.data[idx];
+ let sum = u64::wrapping_add(cur, 1);
+ self.data[idx] = sum;
+ if sum >= cur {
+ // No overflow, we are done.
+ return;
+ } else {
+ // We need to go on.
+ idx += 1;
+ }
+ }
+ // If we came here, there is a last carry to add
+ self.data.push(1);
+ }
+
/// Increments the number by "by".
pub fn inc(&mut self, mut by: u64) {
let mut idx = 0;
}
impl Minimum for BigInt {
+ // This is essentially the solution to 06.1.
fn min<'a>(&'a self, other: &'a Self) -> &'a Self {
debug_assert!(self.test_invariant() && other.test_invariant());
if self.data.len() < other.data.len() {
#[cfg(test)]
mod tests {
+ use std::u64;
use super::overflowing_add;
use super::BigInt;
assert_eq!(overflowing_add(1 << 63, (1 << 63) -1 , true), (0, true));
}
+ #[test]
+ fn test_inc1() {
+ let mut b = BigInt::new(0);
+ b.inc1();
+ assert_eq!(b, BigInt::new(1));
+ b.inc1();
+ assert_eq!(b, BigInt::new(2));
+
+ b = BigInt::new(u64::MAX);
+ b.inc1();
+ assert_eq!(b, BigInt::from_vec(vec![0, 1]));
+ b.inc1();
+ assert_eq!(b, BigInt::from_vec(vec![1, 1]));
+ }
+
#[test]
fn test_power_of_2() {
assert_eq!(BigInt::power_of_2(0), BigInt::new(1));