The short version is that I view Rust types with private invariants as not having just a single invariant, but different invariants that reflect the different "modes" the type can be in.
@cramertj suggested to use "typestate" as terminology here, and I agree that this makes sense.
The short version is that I view Rust types with private invariants as not having just a single invariant, but different invariants that reflect the different "modes" the type can be in.
@cramertj suggested to use "typestate" as terminology here, and I agree that this makes sense.
The [corresponding RFC](https://github.com/rust-lang/rfcs/blob/master/text/2349-pin.md) explains the entirey new API surface in quite some detail: [`Pin`](https://doc.rust-lang.org/nightly/std/mem/struct.Pin.html), [`PinBox`](https://doc.rust-lang.org/nightly/std/boxed/struct.PinBox.html) and the [`Unpin`](https://doc.rust-lang.org/nightly/std/marker/trait.Unpin.html) marker trait.
I will not repeat that here but only show one example of how to use `Pin` references and exploit their guarantees:
{% highlight rust %}
The [corresponding RFC](https://github.com/rust-lang/rfcs/blob/master/text/2349-pin.md) explains the entirey new API surface in quite some detail: [`Pin`](https://doc.rust-lang.org/nightly/std/mem/struct.Pin.html), [`PinBox`](https://doc.rust-lang.org/nightly/std/boxed/struct.PinBox.html) and the [`Unpin`](https://doc.rust-lang.org/nightly/std/marker/trait.Unpin.html) marker trait.
I will not repeat that here but only show one example of how to use `Pin` references and exploit their guarantees:
{% highlight rust %}
`Pin` lets us give a type to `SelfReferantial` that makes it safe to use.
This is in the best tradition of Rust: We are using an expressive type system to provide safe APIs for operations that only have unsafe APIs in other languages (e.g., iterators that avoid iterator invalidation which plague even memory safe languages like Java).
In the following, I will explain how one can prove that our claim of safe encapsulation actually holds true.
`Pin` lets us give a type to `SelfReferantial` that makes it safe to use.
This is in the best tradition of Rust: We are using an expressive type system to provide safe APIs for operations that only have unsafe APIs in other languages (e.g., iterators that avoid iterator invalidation which plague even memory safe languages like Java).
In the following, I will explain how one can prove that our claim of safe encapsulation actually holds true.
On the other hand, for types like `i32`, their pinned typestate invariant `i32.pin(ptr)` will only care about the memory that `ptr` points to and not about the actual value of `ptr`, so they satisfy the `Unpin` axiom.
With this definition at hand, it should be clear that if we assume `T: Unpin`, then `&'a mut T` and `Pin<'a, T>` are equivalent types, and so are `Box<T>` and `PinBox<T>`.
On the other hand, for types like `i32`, their pinned typestate invariant `i32.pin(ptr)` will only care about the memory that `ptr` points to and not about the actual value of `ptr`, so they satisfy the `Unpin` axiom.
With this definition at hand, it should be clear that if we assume `T: Unpin`, then `&'a mut T` and `Pin<'a, T>` are equivalent types, and so are `Box<T>` and `PinBox<T>`.
-We have seen how the new `Pin` type can be used to give safe APIs to types like `SelfReferential`, and how we can (semi-)formally argue for the correctness of `SelfReferential` and the methods on `Pin` and `PinBox`.
+We have seen how the new `Pin` type can be used to give safe APIs to types like `SelfReferential` (which, previously, was not possible), and how we can (semi-)formally argue for the correctness of `SelfReferential` and the methods on `Pin` and `PinBox`.
I hope I was able to shed some light both on how pinning is useful, and how we can reason about safety of a typed API in general.
Next time, we are going to look at an extension to the pinning API proposed by @cramertj which guarantees that `drop` will be called under some circumstances, and how that is useful for intrusive collections.
I hope I was able to shed some light both on how pinning is useful, and how we can reason about safety of a typed API in general.
Next time, we are going to look at an extension to the pinning API proposed by @cramertj which guarantees that `drop` will be called under some circumstances, and how that is useful for intrusive collections.