X-Git-Url: https://git.ralfj.de/web.git/blobdiff_plain/e39245b273a563180604ae04f69c7d49b007d8a8..9d8d2d89dcf88537feb7a18a5bce33049e08f243:/ralf/_posts/2017-07-17-types-as-contracts.md diff --git a/ralf/_posts/2017-07-17-types-as-contracts.md b/ralf/_posts/2017-07-17-types-as-contracts.md index 1227641..bb867e7 100644 --- a/ralf/_posts/2017-07-17-types-as-contracts.md +++ b/ralf/_posts/2017-07-17-types-as-contracts.md @@ -283,11 +283,11 @@ For compound types like tuples, `struct` or `enum`, validation proceeds recursiv In particular, the enum discriminant is checked to be in-range (in particular, nothing can pass validation at an empty enum type). However, because the recursive validation will only lock memory that's actually covered by a field, we also have to acquire the appropriate lock for padding bytes and the enum discriminant here. -Finally, at a reference type, two things happen. -First, the reference itself is stored in memory somewhere; this memory has to be locked just like the validation of `i32` locks the memory used to store the integer. -The reference is also checked to be non-NULL and properly aligned for the type it points to. -Furthermore, validation proceeds recursively after *dereferencing* the reference. -Crucially, the `mutbl` and `lft` for this recursive call are taking the reference type into account: +Finally, when encountering a box or reference type, two things happen. +First, the pointer itself is stored in memory somewhere; this memory has to be locked just like the validation of `i32` locks the memory used to store the integer. +The pointer is also checked to be non-NULL and properly aligned for the type it points to. +Furthermore, validation proceeds recursively after *dereferencing* the pointer. +Crucially, for the case of validating a reference, the `mutbl` and `lft` for this recursive call are taking the type into account: If `lft` was `None` and this reference's lifetime ends within the function (i.e., there is a corresponding `EndRegion` somewhere), it is now set to the reference's lifetime. If `mutbl` was mutable, it becomes immutable when following a shared reference. @@ -321,8 +321,7 @@ If a function takes an `x: &Cell`, following the rules above, it will acqui Clearly, we do not want to do that -- calling `x.set` *will* actually mutate `*x`, and mutating through a shared reference is exactly the point of using `Cell`! Lucky enough, the compiler *already* says that interior mutability is only allowed via [`UnsafeCell`](https://doc.rust-lang.org/beta/core/cell/struct.UnsafeCell.html). -We can use this for our purposes: To adjust validation for interior mutability, we *stop* our recursive descent and do not do anything when reaching an `UnsafeCell` *while `mutbl` indicates we are in immutable mode*. -(`&mut UnsafeCell` is not affected.) +We can use this for our purposes: To adjust validation for interior mutability, we *stop* our recursive descent and do not do anything when reaching an `UnsafeCell` *while `mutbl` indicates we are in immutable mode* -- `&mut UnsafeCell` is not affected. In particular, no locks are acquired. This justifies calling `set` on a shared reference and having the value changed. Of course, it also means we cannot do some of the optimizations we discussed above -- but that's actually exactly what we want!