X-Git-Url: https://git.ralfj.de/web.git/blobdiff_plain/a77f1777f71f56db4df986b85d1b9f6955feb947..a39bf384475c02d4e32e046fec89a31452488cb8:/personal/_posts/2022-04-11-provenance-exposed.md diff --git a/personal/_posts/2022-04-11-provenance-exposed.md b/personal/_posts/2022-04-11-provenance-exposed.md index e5560e2..53d0b84 100644 --- a/personal/_posts/2022-04-11-provenance-exposed.md +++ b/personal/_posts/2022-04-11-provenance-exposed.md @@ -328,7 +328,7 @@ Compositionality at its finest! I have talked a lot about my vision for "solving" pointer provenance in Rust. What about other languages? -As you might have heard, C is moving towards making [PNVI-ae-udi](http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2577.pdf) an official recommendation for how to interpret the C memory model. +As you might have heard, C is moving towards making [PNVI-ae-udi](http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2676.pdf) an official recommendation for how to interpret the C memory model. With C having so much more legacy code to care about and many more stakeholders than Rust does, this is an impressive achievement! How does it compare to all I said above? @@ -421,6 +421,10 @@ My personal stance is that we should not let the cast synthesize a new provenanc This would entirely lose the benefit I discussed above of making pointer-integer round-trips a *local* concern -- if these round-trips produce new, never-before-seen kinds of provenance, then the entire rest of the memory model has to define how it deals with those provenances. We already have no choice but treat pointer-integer casts as an operation with side-effects; let's just do the same with integer-pointer casts and remain sure that no matter what the aliasing rules are, they will work fine even in the presence of pointer-integer round-trips. +That said, under this model integer-pointer casts still have no side-effect, in the sense that just removing them (if their result is unused) is fine. +Hence, it *could* make sense to implicitly perform integer-pointer casts in some situations, like when an integer value (without provenance) is used in a pointer operation (due to an integer-to-pointer transmutation). +This breaks some optimizations like load fusion (turning two loads into one assumes the same provenance was picked both times), but most optimizations (in particular dead code elimination) are unaffected. + #### What about LLVM? I discussed above how my vision for Rust relates to the direction C is moving towards.