X-Git-Url: https://git.ralfj.de/web.git/blobdiff_plain/37f45a5b5b8f002b72000c48fb850faa0957f191..5aa70f42491b3b391de4288c76ebb4ae1dfe49d6:/personal/_posts/2018-07-24-pointers-and-bytes.md?ds=sidebyside diff --git a/personal/_posts/2018-07-24-pointers-and-bytes.md b/personal/_posts/2018-07-24-pointers-and-bytes.md index 35a5c15..0496a5d 100644 --- a/personal/_posts/2018-07-24-pointers-and-bytes.md +++ b/personal/_posts/2018-07-24-pointers-and-bytes.md @@ -173,7 +173,7 @@ We have to say what the value of `v` is, so we have to find some way to answer t (And this is an entirely separate issue from the problem with multiplication that came up in the last section. We just assume some abstract type `Pointer`.) We cannot represent a byte of a pointer as an element of `0..256`. -Essentially, if we use a naive model of memory, the extra "hidden" part of a pointer (the one that makes it more than just an integer) would be lost whne a pointer is stored to memory and loaded again. +Essentially, if we use a naive model of memory, the extra "hidden" part of a pointer (the one that makes it more than just an integer) would be lost when a pointer is stored to memory and loaded again. We have to fix this, so we have to extend our notion of a "byte" to accomodate that extra state. So, a byte is now *either* an element of `0..256` ("raw bits"), *or* the n-th byte of some abstract pointer. If we were to implement our memory model in Rust, this might look as follows: