
Rustlantis: Randomized Differential Testing of the Rust
Compiler
QIAN WANG, ETH Zurich, Switzerland and Imperial College London, UK
RALF JUNG, ETH Zurich, Switzerland

Compilers are at the core of all computer architecture. Their middle-end and back-end are full of subtle code
that is easy to get wrong. At the same time, the consequences of compiler bugs can be severe. Therefore, it is
important that we develop techniques to increase our confidence in compiler correctness, and to help find the
bugs that inevitably happen. One promising such technique that has successfully found many compiler bugs
in the past is randomized differential testing, a fuzzing approach whereby the same program is executed with
different compilers or different compiler settings to detect any unexpected differences in behavior.

We present Rustlantis, the first fuzzer for the Rust programming language that is able to find new correctness
bugs in the official Rust compiler. To avoid having to deal with Rust’s strict type and borrow checker, Rustlantis
directly generates MIR, the central IR of the Rust compiler for optimizations. The program generation strategy
of Rustlantis is a combination of statically tracking the state of the program, obscuring the program state
for the compiler, and decoy blocks to lead optimizations astray. This has allowed us to identify 22 previously
unknown bugs in the Rust compiler, most of which have been fixed.

CCS Concepts: • Software and its engineering→ Compilers; Software testing and debugging; Main-
taining software.

Additional Key Words and Phrases: Differential fuzzing, Compiler testing, Rust

ACM Reference Format:
Qian Wang and Ralf Jung. 2024. Rustlantis: Randomized Differential Testing of the Rust Compiler. Proc. ACM
Program. Lang. 8, OOPSLA2, Article 340 (October 2024), 27 pages. https://doi.org/10.1145/3689780

1 Introduction
Compilers are a critical piece of infrastructure. Whenever we are writing programs, debugging
or testing them, even when doing verification, we usually work on the level of program source
code, and we trust the compiler to correctly turn our intent into machine code. In the case of
compilers for safe languages like Rust, Swift, or Go, we furthermore trust that compilation does
not subvert the safety guarantees that the type checker has worked so hard to establish. However,
modern compilers are also extremely complicated. For instance, the middle-end and back-end of
the Rust compiler—the parts that work on the code after all type-checking is done—amount to
around 100,000 lines of code (without comments and whitespace).1 Once that code is done, further
optimizations and machine code generation are performed by LLVM, which consists of multiple

1As reported by cloc rustc_middle/src/mir rustc_const_eval rustc_mir_transform rustc_mir_dataflow
rustc_codegen_ssa rustc_codegen_llvm rustc_codegen_cranelift in the compiler directory on commit ed7e35f34
of the Rust compiler (nightly-2024-07-06).

Authors’ Contact Information: Qian Wang, andy.wang99@icloud.com, ETH Zurich, Switzerland and Imperial College
London, UK; Ralf Jung, ralf.jung@inf.ethz.ch, ETH Zurich, Switzerland.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART340
https://doi.org/10.1145/3689780

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0009-0006-0779-8651
HTTPS://ORCID.ORG/0000-0001-7669-6348
https://doi.org/10.1145/3689780
https://orcid.org/0009-0006-0779-8651
https://orcid.org/0000-0001-7669-6348
https://doi.org/10.1145/3689780
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

340:2 Qian Wang and Ralf Jung

million lines of code. Clearly we cannot just expect all that code to be bug-free. We therefore need
techniques that can help increase our confidence in the correctness of compilers.

The gold standard for this is full formal verification. However, while there have been landmark
projects demonstrating the feasibility of end-to-end compiler verification, they are monumental
efforts which are few and far between. Currently, there are verified compilers for two languages:
C [17] and ML [14]. Clearly, it is not feasible to undertake such an endeavor for each language. And
even if that were to happen, so far verified compilers are significantly lagging behind unverified
compilers in terms of performance of the generated code.2 We are quite far from being able
to actually prove the correctness of the fastest production-grade compilers, or even their most
important optimization passes. On top of this, that code is constantly evolving. Therefore, it is
important that we consider alternative techniques that fall short of formal correctness proofs in
their level of assurance, but are more easily applied to today’s compilers.
One promising such technique is fuzzing. Fuzzing has been extremely effective at finding bugs

in many different kinds of code [21], including compilers [7, 35, 15, 29, 24, 20]. One of the fuzzing
techniques employed in this work is randomized differential testing [22]: the fuzzer generates
random programs and then compiles them with various different compilers or different compiler
flags (e.g., with and without optimizations), and compares the results. If different results are
produced, then one result must be wrong.3

However, so far no fuzzer has been developed that is able to effectively find new code generation
correctness bugs in the Rust compiler. Rust is an interesting target for compiler correctness fuzzing,
in the sense that it is both particularly worthwhile but also particularly challenging:

• Rust is a big language with a large number of control flow primitives. It has a complicated
type system involving ownership types and borrowing (a form of region types). That makes
it hard to randomly generate well-typed code.

• Rust programs can make use of unsafe operations, which can cause Undefined Behavior.
Such programs can be compiled to arbitrary results without that being indicative of a compiler
bug. It is quite common for Undefined Behavior to lead to different behavior with and without
optimizations. Fuzzers hence have to be fairly sure that a program does not have Undefined
Behavior before considering such behavior differences to be bugs. Furthermore, even safe Rust
can exhibit non-determinism, which is in conflict with the differential testing methodology.

• Rust’s primary targets are safety critical components, where compiler bugs could have a
much bigger impact than, e.g., in a UI frontend.

• Rust only has a single production-grade implementation, i.e., a single compiler to worry
about—improving the quality of that one compiler will benefit all Rust programmers. That
said, this compiler has multiple backends: only the LLVM backend is considered stable, but
there are experimental backends using Cranelift and GCC.

With this work, we introduce Rustlantis, the first fuzzer and random program generator for Rust
that has been able to find new, previously unknown code generation correctness bugs. Overall,
we have found 22 new bugs, most of which were quickly fixed by compiler developers. The key
contributions of Rustlantis are as follows:

• Rustlantis generates a control-flow graph for a compiler IR, rather than generating regular
Rust programs. This avoids the complexity of generating well-typed Rust code that passes

2According to the CompCert manual [18]: “Performance of the generated code is decent but not outstanding: on PowerPC,
about 90% of the performance of GCC version 4 at optimization level 1.” This refers to an ancient version of GCC, released
around 20 years ago.
3This ignores issues such as non-determinism and Undefined Behavior; we will get back to those points later.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

Rustlantis: Randomized Differential Testing of the Rust Compiler 340:3

the borrow checker. It also means we cannot find bugs in the Rust frontend, but the frontend
is already covered very well by other fuzzers [2, 13].

• Rustlantis uses a place graph to keep track of all reachable memory even through pointer
indirections. This lets us generate code that we are sure is free of Undefined Behavior and
non-determinism without adding local checks in the code that would make these properties
obvious to the compiler. The generated code can even mix Rust’s reference types and raw
pointers, a situation that is prone to particularly subtle cases of Undefined Behavior [12, 31].
The place graph is interprocedural, so while Rustlantis knows everything about pointers
passed as function arguments, intraprocedural analyses in the compiler do not. Some values
are additionally obfuscated to prevent even interprocedural analyses from being able to
reason about them.

• Rustlantis uses decoy blocks to generate code with a complex control flow that executes like
straight-line code: the control flow graph can contain loops and call the same function in
multiple places, but the actual execution of the generated program will not take any loop
more than once and not call any function more than once to ensure the correctness of the
data in the place graph.

While Rustlantis is only able to generate Rust programs, we believe that its fundamental approach
is sufficiently general that it can be used to generate programs in control flow graph representation
for other languages as well, such as LLVM IR or GCC GIMPLE.

To demonstrate the effectiveness of Ruslantis, we present the bugs we have found and reported:
8 bugs in rustc itself and 14 bugs in its code generation backends. In addition, we performed
controlled experiments on specific Rustlantis and Rust toolchain versions, to measure bug detection
rate and code coverage.

The rest of this paper is structured as follows: In §2, we provide the required background about
differential testing and the Rust compiler architecture, in particular MIR. In §3, we describe the
Rustlantis program generator. In §4, we explain our evaluation approach and result. Finally, we
conclude with related and future work.

2 Background
Before explaining how Rustlantis works, we briefly discuss differential testing in general. We also
explain the structure of MIR, the intermediate representation of the Rust compiler that Rustlantis
works on.

2.1 Differential Testing
The general approach of differential testing [22] is to compile and run (or interpret) the same
program with different compilers or interpreters and under different optimization settings—we call
them testing backends. The compiler should not crash, and all execution results should be identical.
If a compiler crashes or the execution results differ, then at least one testing backend has a bug,
which can then be manually identified.

However, this only works if we are sure that the programs under consideration are well-defined
(i.e., they do not cause Undefined Behavior) and deterministic. These constraints are important
because programs with Undefined Behavior may be optimized in arbitrary ways; there is no require-
ment of different backends producing consistent behavior. In contrast, non-deterministic programs
are fundamentally well-defined, but they are allowed to exhibit multiple different behaviors at
runtime, so different behaviors with different testing backends do not indicate a bug.

These are not just theoretical concerns; there are simple examples demonstrating how Undefined
Behavior and non-determinism can lead to programs apparently changing their behavior when

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

340:4 Qian Wang and Ralf Jung

fn ub() -> bool {

let x: Option<bool> = unsafe { std::mem::transmute(13u8) };

x.is_some()

}

fn nondet_behavior_ptr() -> bool {

let x = 0i32;

let y = 0i32;

(&x as *const i32 as usize) + 4 == (&y as *const i32 as usize)

}

// Call with argument `0.0' to see the effect.

fn nondet_behavior_float(x: f32) -> bool {

(x / 0.0).is_sign_positive()

}

Fig. 1. Examples of Rust programs that exhibit Undefined Behavior or non-determinism

comparing the result with and without optimizations. Those would lead to false positives during
differential testing. We show three such examples in Figure 1.4

The first function, ub, is an example of Undefined Behavior. In an unoptimized build, this function
returns true, but in an optimized build it crashes due to an “illegal instruction”: the optimizer
notices that this function cannot be reachable in a well-defined execution, and generates code that
aborts the program.5

The other two functions demonstrate two sources of non-determinism. nondet_behavior_ptr
compares the address of two local variables, checking whether they are exactly adjacent to each
other (both variables have a size of 4 bytes). In an unoptimized build, it returns true, but in an
optimized build it returns false.6 nondet_behavior_float shows that memory addresses are
not the only source of non-determinism in Rust: performing a floating-point division of 0.0 by
0.0 produces a NaN result. Even NaN values carry a sign, but Rust considers the sign to be picked
non-deterministically. In an unoptimized build, this function returns false, but in an optimized
build it returns true.7

2.2 Mid-level Intermediate Representation (MIR)
MIR is the last intermediate language of the Rust compiler before lowering to LLVM IR (or Cranelift,
in the case of the Cranelift backend). It is the IR used for borrow-checking and also for various
optimization passes. That makes it by far the most relevant IR of the compiler for our purposes.
Conveniently, the Rust compiler has a feature called “custom MIR” that enables writing test cases
that directly produce a given MIR (rather than writing regular Rust which gets compiled to MIR).

4We have tried these examples with Rust 1.76.0 on an x86-64 Linux machine. Results can vary with different compiler
versions and different targets. Unoptimized builds use rustc without any flags; optimized builds additionally set the -O flag.
5The reason why this function has Undefined Behavior is not very important, so we delegate the explanation to a footnote.
13 is not a valid representation for the type Option<bool>, so this unchecked typecast (“transmute” in Rust terms) violates
language assumptions. With optimizations, the compiler realizes that this cast is never allowed and replaces the entire
function by an “unreachable” trap.
6The exact addresses that local variables are placed at are not specified by Rust. In an unoptimized build, it happens to be
the case that y is stored just after x in memory. In an optimized build, both variables get removed entirely and the compiler
just pretends that it picked a stack layout where the variables happened to not sit next to each other.
7In an unoptimized build, the division is performed by the x86 CPU at runtime, which generates NaN with negative sign. In
an optimized build, the division is performed by a soft-float library at compile-time, and the soft-float library generates NaN
with positive sign.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

Rustlantis: Randomized Differential Testing of the Rust Compiler 340:5

Custom MIR can be injected at any stage in the MIR pipeline. Rustlantis uses this feature to be able
to entirely bypass the Rust frontend and inject MIR between borrow-checking and optimizations.

MIR does not have a concept of “safe” vs. “unsafe” code, so the programs generated by Rustlantis
would in general require unsafe Rust to be written in the surface language. In fact, many of the
generated programs cannot be directly expressed in surface Rust at all; however, they might arise
from regular Rust programs by applying MIR transformations. Characterizing the exact subset
of MIR that can arise in today’s Rust compiler is non-trivial, and it is not worth the effort: to be
prepared for future compiler changes, MIR passes are designed to be able to deal with all well-
formed MIR. Therefore, any bug in a Rustlantis-generated program is considered a bug in the
compiler, even if today it would not be possible to hit that bug by writing regular (safe or unsafe)
Rust code.
High-level Rust operations such as iterators and pattern matching are reduced to sequences of

low-level operations in MIR, so a deep understanding of Rust is not required to read MIR code.
However, MIR uses the same types as surface Rust, so we briefly discuss the particularities of Rust
types that are relevant here. First of all, Rust distinguishes between references and (raw) pointers.
References are safe to use and fully tracked by the type system; raw pointers are almost the same as
pointers in C and can only be used in unsafe code, because the type system does not keep track of
whether they are valid or not. Both of these come in a mutable and an immutable variant: &mut T
and &T for mutable and immutable references; *mut T and *const T for mutable and immutable
pointers. The same MIR syntax is used to dereference all of them. Secondly, Rust has enum types
that correspond to algebraic datatypes from functional programming languages. For instance, an
enum OptionInt { Some(i32), None } represents a value that is either some integer (of type
i32), or no value at all. Here, Some and None are called the variants of the enum.
With that out of the way, we can talk about the structure of MIR itself. MIR is a control-flow

graph (CFG) language where each function body contains one or more basic blocks. Each basic
block consists of any number of statements followed by a terminator. Statements within a basic
block are to be executed top-down with no branching or function calls, and they never diverge (but
they can cause Undefined Behavior). The terminator leads to one or more successor basic blocks.
The program’s control flow, such as if-statements, loops, and function calls, are represented by
different terminators. In addition to basic blocks, MIR function bodies also contain declarations of
local variables and their types. The grammar of the subset of MIR Rustlantis can generate is listed
in Figure 2.

Statements. Rustlantis generates only a single kind of statement: assignments. (MIR itself supports
more statements, but they are either purely administrative or used extremely rarely.) Assignments
store an “rvalue” into a place.

Rvalues (named after the fact that they appear on the right-hand side of assignments) provide the
basic computational primitives of MIR: arithmetic (unary and binary operators, as well as “checked”
operators which indicate whether overflow occurred), creating a reference or raw pointer to a
place, as well as basic datatype constructors. The operands of all these operations can either be
constant literals, or they can be loaded from a place. The special Move operand type is only relevant
for function calls; we will explain it later in §3.2.

Places (also known as “lvalues” in C as they appear on the left-hand side of assignments) represent
a location in memory. Syntactically, a place expression consists of a local variable combined with
zero or more projections. Rustlantis can generate 4 types of projections:

• Tuple or struct field: a.0, a.foo

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

340:6 Qian Wang and Ralf Jung

⟨Function⟩ ::=
‘fn’ ⟨ident⟩‘(’ (⟨ident⟩‘:’ ⟨type⟩,)* ‘) ->’ ⟨type⟩ ‘{’ (⟨Declaration⟩;)* ⟨BasicBlock⟩+ ‘}’

⟨Declaration⟩ ::= ‘let’ ⟨ident⟩ ‘:’ ⟨type⟩

⟨BasicBlock⟩ ::= (⟨bb⟩ ‘=’)? ‘{’ (⟨Statement⟩;)+ ⟨Terminator⟩ ‘}’

⟨bb⟩ ::= ⟨ident⟩

⟨Terminator⟩ ::= ‘Goto(’ ⟨bb⟩ ‘)’
| ‘Return()’
| ‘Call(’ ⟨Place⟩ ‘=’ ⟨ident⟩ ‘(’ (⟨Operand⟩,)* ‘)’,

‘ReturnTo(’ ⟨bb⟩ ‘)’, ‘UnwindUnreachable()‘ ‘)’
| ‘match’ ⟨ident⟩ ‘{’ (⟨literal⟩ ‘=>’ ⟨bb⟩,)* ‘_ =>’ ⟨bb⟩ ‘}’

⟨Statement⟩ ::= ⟨Place⟩ ‘=’ ⟨Rvalue⟩

⟨Rvalue⟩ ::= ⟨Operand⟩
| ⟨UnOp⟩ ⟨Operand⟩
| ⟨Operand⟩ ⟨BinOp⟩ ⟨Operand⟩
| ⟨Operand⟩ ‘as’ ⟨ty⟩
| ‘Checked(’ ⟨Operand⟩, ⟨BinOp⟩, ⟨Operand⟩ ‘)’
| ‘&’ ⟨Place⟩ (create immutable reference)
| ‘&mut’ ⟨Place⟩ (create mutable reference)
| ‘&raw const’ ⟨Place⟩ (create immutable pointer)
| ‘&raw mut’ ⟨Place⟩ (create mutable pointer)
| ‘(’ (⟨Operand⟩,)+ ‘)’ (create tuple)
| ‘[’ (⟨Operand⟩,)+ ‘]’ (create array)
| ⟨type⟩ ‘{’ (⟨ident⟩‘:’ ⟨Operand⟩,)+ ‘}’ (create struct)

⟨Operand⟩ ::= ⟨Place⟩ | ‘Move(’ ⟨Place⟩ ‘)’ | ⟨literal⟩

⟨UnOp⟩ ::= ‘!’ | ‘-’

⟨BinOp⟩ ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’ | ‘^’ | ‘&’ | ‘|’ | ‘<<’ | ‘>>’ | ‘==’ | ‘<’ | ‘<=’ | ‘!=’ | ‘>=’ | ‘>’

⟨Place⟩ ::= ⟨ident⟩
| ⟨Place⟩ ‘.’ ⟨index⟩ (tuple field)
| ⟨Place⟩ ‘.’ ⟨ident⟩ (struct field)
| ⟨Place⟩ ‘[’ ⟨index⟩ ‘]’ (array element)
| ‘Field(Variant(’ ⟨Place⟩, ⟨index⟩ ‘)’, ⟨index⟩ ‘)’ (enum variant field)
| ‘*(’ ⟨Place⟩ ‘)’ (pointer dereference)

Fig. 2. MIR grammar generated by Rustlantis

• Field of an enum variant: Field(Variant(a, 2), 3) projects to the 2nd variant of place a,
and then the third field inside that variant (this operation does not exist in surface Rust, it is
generated as part of compiling pattern matching down to MIR)

• Array element: a[0], a[i]
• Reference and pointer dereference: *a

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

Rustlantis: Randomized Differential Testing of the Rust Compiler 340:7

Arbitrarily many (or zero) projections can be chained together in a place expression. However,
later stages of the Rust compiler (including the one where Rustlantis will inject its generated MIR)
require that dereference is only used as the first projection. For instance,*(a.foo) is not allowed,
as the dereference occurs after a field projection.
Due to pointers, syntactically identical place expressions may evaluate to different places at

different points in the program. For instance, consider:

1 let x: i32; let y: i32;

2 let a: *mut i32;

3 {

4 a = &raw mut x;

5 *a = 42;

6 a = &raw mut y;

7 *a = 42;

8 Return()

9 }

*a on line 5 is syntactically identical to*a on line 7, but the former refers to x, whereas the latter
refers to y. Conversely, pointers may alias, so there can be syntactically distinct place expressions
referring to the same location.

Terminators. Rustlantis supports the following four terminators:
• Goto: Unconditionally enter another basic block.
• match: Conditional jump based on the value of a local variable. If nothing matches, enter the
fallthrough basic block. (This corresponds to a switch in C.)

• Call: Call another function, then enter the target basic block after it has returned.
• Return: Copy the value of the return slot (a dedicated local variable) to the return_place
in the corresponding Call terminator, then return from the current function and enter the
target basic block.

The most notable omission compared to the full grammar of MIR is Drop, the terminator used to
call a destructor. Destructor calls usually get automatically inserted by the Rust compiler whenever
a variable goes out of scope. However, these calls behave just like regular function calls, so from
the perspective of fuzzing code generation they are not very interesting.

3 Rustlantis
Rustlantis can generate programs from the grammar shown above in Figure 2. We support all
primitive integer and floating point types, bool, char, arrays, tuples, raw pointers, shared and
mutable references, structs, and enums. On top of all the usual primitive arithmetical and logical
operators, Rustlantis supports pointer arithmetic and transmute (an unsafe type cast).

Rustlantis generates single-file programs containing a main function which calls other generated
functions. The source program can either be compiled into an executable and then executed natively,
or be interpreted by Miri [26], a Rust interpreter intended for Undefined Behavior detection.

Note that Rustlantis only generates monomorphic code, i.e., code without generics or traits. This
suffices to test code generation because the Rust compiler anyway monomorphizes code before
handing it to the backend: at this point, all types are known and all function calls are resolved
to the concrete instance that will be invoked.8 That said, MIR optimizations are applied before

8Rust also supports dynamic dispatch via dyn Trait types, which is not supported by Rustlantis. While dynamic dispatch
is important in some scenarios, the vast majority of Rust code uses static dispatch.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

340:8 Qian Wang and Ralf Jung

monomorphization, so for a future extension of Rustlantis it could be interesting to consider
generating generic code.

By construction, programs generated by Rustlantis are terminating, deterministic, and free from
Undefined Behavior (UB). The specification of Undefined Behavior in Rust is still incomplete;
when there are gaps in the specification, we use the definition implemented by Miri with the Tree
Borrows [31] aliasing model. Miri is able to detect all Undefined Behavior that the Rust compiler
exploits for optimizations, so this guarantees that a difference in output between different testing
backends always indicates a bug in at least one of the backends or a bug in Rustlantis.

The rest of this Chapter describes the generation process in detail.

3.1 Statements and Declarations
Rustlantis’ generation process is similar to an interpreter, but instead of executing code, it is produc-
ing code in execution order. Within a basic block, Rustlantis generates statements or declarations
top-down, one at a time. It maintains a cursor which specifies the current function and current
basic block (represented as fnX:bbY). The next statement/terminator to be generated will be added
at the end of that basic block.

To produce an executable program, Rustlantis also generates a main function that calls the initial
function fn0 with a list of literal arguments. While Rustlantis knows the values chosen for these
arguments, we want them to be “hidden” from the compiler and not used by optimizations. For this
purpose, Rust provides a black_box function, so even if fn0 gets inlined, the values chosen for its
arguments cannot be used by optimizations.
Generation starts at fn0:bb0. At each step, Rustlantis decides whether it should generate a

statement or a new local variable declaration.
Each statement is generated by randomly traversing its grammar, as visualized in Figure 3.

⟨Place⟩ = ⟨Rvalue⟩

⟨Operand⟩ ⟨UnOp⟩ ⟨Operand⟩ ...Place picker

Operand picker

Place picker Literal

‘!’‘-’ Operand picker

Place picker Literal

Fig. 3. The decision tree for generating an assignment.

For an assignment statement, Rustlantis needs to choose two sub-components: a place and an
rvalue. The place is the left-hand side (LHS) of the assignment. A dedicated function will provide a
list of candidate places, which is described below in §3.2.

Assuming for now that we have chosen a place from the candidate list, the next step is to call a
function that generates an rvalue which has the same type as the chosen LHS. If this is not possible
(there is no expressible place in the current function with that type), then Rustlantis removes the
chosen LHS place from the candidate list, picks another place and then tries again. This repeats

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

Rustlantis: Randomized Differential Testing of the Rust Compiler 340:9

1 fn fn1() { mir!(

2 let _1: (i32, bool);

3 let _2: *const bool;

4 {

5 _1 = (42, true);

6 _2 = &raw const _1.1;

7 // <- Current Cursor

8 }

9)}

_1:(i32, bool)

i32 bool

_2:*const bool

Fi
el
dI
dx
(0
) FieldIdx(1)

De
re
f

Fig. 4. Place graph example

until either a valid pair of place and rvalue is found, or the candidate list becomes empty and an
error is returned.

When an operand is required as a part of an rvalue variant, we first try to pick a place as above.
If this fails and the required operand type is expressible as a literal, we generate a random literal.

After recursively trying all options, the root that generates the assign statement may run out of
place candidates. In this case, a new local variable is declared in the current function, making it
more likely that we will find a suitable place for the next statement.
To generate statements that are interesting, the choices at each syntactical level have weights

attached. For instance, we do not want to generate a standalone Operand as Rvalue too often,
but we do want to generate &raw often as raw pointers are complex to optimize. We determined
these weights by how complex we estimate the operations are for the compiler to optimize, and
hard-coded them.

3.2 Keeping Track of Places
We get back to the question of how to generate random places. Recall that a key concept of places
in Rust are projections, which map one place to another: from a local variable to its field to a field
of its field. This naturally gives rise to a graph structure, where nodes are places, and edges are
projections. This graph contains trees rooted at each local variable (formed of the projections that
access fields and index arrays), but it’s not a forest since dereference projections can point from
one tree to another, to reflect where the pointer currently points to.

In Rustlantis, the place graph is responsible for keeping track of all places in the program, globally.
Figure 4 shows a representation of the place graph when the cursor is on line 7.
When a local variable declaration is generated, the variable is added to the place graph, along

with all the places reachable via field/index projections. Dereference projections for places of
pointer type are only added when a statement assigning to the pointer is generated. This means
we know at all times where an initialized pointer is pointing to. If a pointer is overwritten, the old
dereference edge is removed and a new one is added targeting the new pointee.
Note the place graph isn’t a fully accurate memory model for Rust: unlike C and C++, Rust

does not have “typed memory”. This means that a local variable does not contain a tree of values
reflecting the structure of its type, it just contains an untyped list of bytes. The same memory
location can be referred to by different place expressions of different types (assuming the alignment
constraint is satisfied). Nonetheless, the place graph is a valid, albeit restricted, approximation to
Rust’s full memory model.

Each node in the place graph also keeps track of some information about the runtime state of the
place, such as whether it is initialized. In case a literal assignment to it is generated, the value of the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

340:10 Qian Wang and Ralf Jung

literal is saved as the known value of the place. The value stops being known when it is overwritten
by a non-literal, e.g., the result of an arithmetic operation.9 When an enum value is assigned to a
place, the variant index is also saved to the node as a known value. The information in a node can
be propagated to another node when an operation that copies between places is generated.

Generating place candidates. Whenever the program generator needs a place, we gather all local
variables and perform a depth-first search through the place graph starting from each of them.
This gives us the full list of expressible places. Then we filter out the places that could produce an
ill-formed program or trigger UB if used in the current context.
For instance, when we are selecting the divisor of a Div binary operation, we can restrict the

selection to places that have the same type as the dividend, are initialized, and have a non-zero
known literal value. The filtering guarantees that all place candidates are remaining choices that
will not result in a compile error or UB.

When Rustlantis enters a new function, all the local variables in the previous function (the caller)
are no longer accessible. To keep track of which local is currently accessible, we track a place stack
alongside the place graph, with one frame for each ongoing function call.
Each frame in that stack contains a list of nodes in the place graph which are locals declared

in the function. Nodes are added to the last frame whenever a local declaration is generated, and
place candidate searches start from the locals in the current frame.
Finally, there is subtle Undefined Behavior around function calls that we need to be aware of:

the return place designated by the caller (i.e., where the return value will be stored) must not be
accessed while the function runs. It is not possible to write Rust code that does this, since Rust
always uses a fresh local variable as the return place for each function call. However, in MIR it is
possible to write code like Call(_1 = f(&raw mut _1), ...), and such MIR might arise from
regular Rust code after applying some MIR optimizations. To allow more efficient handling of
return values, Rust declares it Undefined Behavior for _1 to be accessed while f runs, so reading or
writing that raw pointer passed as first argument would be Undefined Behavior.10 Rustlantis hence
considers _1 to be protected during the execution of f. This is tracked in the place stack.
A similar situation arises with “call-by-move” function arguments, as in f(Move(_3)). Such

arguments may use an optimized calling convention that avoids copies, at the cost of making it
Undefined Behavior to access the original place while the function runs. Hence, _3 would also be
considered protected in this example.

An example demonstrating both protected arguments and return values is shown in Figure 5. The
cursor is in fn2. While executing this function, the local variables _1 and _3 in fn1 are protected,
since they are used as return place and call-by-move function argument, respectively. fn2 would
have the chance to access both of these places via the raw pointers a and c, respectively; doing that
would cause Undefined Behavior. Since the place graph tracks where these pointers are pointing,
Rustlantis can detect this situation and avoid generating such accesses.
After a function has returned, all its local variables are deallocated. Accessing a deallocated

place is UB, so we add information about whether a place has been deallocated to the place graph.
Deallocated places can never be chosen. This prevents UB if a function returns a pointer to a local
variable.

9It is theoretically possible to compute all operations and know the value of all places. However, this would require a full
interpreter, which would be significantly more implementation effort in the fuzzer.
10The underlying reason for this is that the Rust compiler may store the callee’s return local directly in the place designated
by the caller. The return local can be read or written by the callee like any other local, so any use of that memory for other
purposes is forbidden while the function executes.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

Rustlantis: Randomized Differential Testing of the Rust Compiler 340:11

fn fn1() { mir!(

let _1: i32;

let _2: *mut i32;

let _3: Foo;

let _4: *mut Foo;

{

_2 = &raw mut _1;

_3 = Foo { /* ... */ };

_4 = &raw mut _3;

Call(_1 = fn2(_2, Move(_3), _4), ReturnTo(bb1), UnwindUnreachable())

}

bb1 = {

// Return target

}

)}

fn fn2(

a: *mut i32,

b: Foo,

c: *mut Foo

) -> i32 { mir!(

{

// <- Current Cursor

}

)}

_1:i32 _2: *mut i32

_3: Foo _4: *mut Foo

_1:i32

_3:Foo

fn1

RET a: *mut i32

b: Foo c: *mut Foo

fn2

Fig. 5. Place graph with multiple functions

3.3 Terminators
Once a random amount of statements in a basic block is reached (chosen at the beginning of
generating a block), a terminator is generated, and the generation of the basic block is complete.
Rustlantis then resumes generation in the basic block that execution will jump to. This ensures
that we always follow the same path as program execution, so the information in the place graph
is always accurate.

Goto. When a Goto terminator is selected, an empty basic block is added to the current function
and the cursor is set to it to resume generation there.

SwitchInt. This is the most complex terminator, as there are multiple potential successors. Our
strategy is as follows (illustrated in Figure 6):
(i) First, we pick a place with a known value as the subject to match on.
(ii) Then, we generate a list of decoy arms for values that we know are not the current value of

the subject. The target of a decoy arm can be a random existing basic block like bb1, or new
empty basic blocks like bb3 and bb4.

(iii) If we have added new decoy basic blocks, we fill them with an identical copy of a random
existing basic block, including statements and the terminator. (If there are no existing ones to
choose from, we add to it the Return terminator and no statements.) This is guaranteed to be
syntactically well-formed, as all identifiers mentioned in existing basic blocks have already

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

340:12 Qian Wang and Ralf Jung

(i)

bb1 = {

x = 42;

/*...*/

}

bb2 = {

match x {

...

}

}

(ii)

bb1 = {

x = 42;

/*...*/

}

bb2 = {

match x {

0 => bb1,

1 => bb3,

_ => bb4,

}

}

bb3 = {}

bb4 = {}

(iii)

bb1 = {

x = 42;

/*...*/

}

bb2 = {

match x {

0 => bb1,

1 => bb3,

_ => bb4,

}

}

bb3 = {

/* copy of bb1 */

}

bb4 = {

/* copy of bb1 */

}

(iv)

bb1 = {

x = 42;

/*...*/

}

bb2 = {

match x {

0 => bb1,

1 => bb3,

42 => bb5,

_ => bb4,

}

}

bb3 = {

/* copy of bb1 */

}

bb4 = {

/* copy of bb1 */

}

bb5 = {

/* <- New Cursor */

}

Fig. 6. Steps of generating a SwitchInt

been declared. The semantic effect of the content is irrelevant, as these basic blocks will never
be executed at runtime.

(iv) Finally, we add the real target basic block for the known value of the subject. We move the
cursor to it and resume generation.

This approach guarantees that all statements are executed at most once, and all functions are
entered exactly once. Our generation order is in lockstep with the real execution order of the
program, thereby guaranteeing that all UB can be prevented using the accurate information in
place graph.

Although Rustlantis knows the precise value of the subject, the compiler cannot always determine
this value. For instance, the subject value may come from dereferencing a pointer which is a function
parameter. The compiler would have to find the value of its pointee from the callers – potentially
multiple levels up the call chain. With decoy blocks, there can be multiple call sites for each function,
so the compiler cannot easily guarantee that the pointer parameter always points to the same value.

This strategy allows us to produce a CFG similar to the ones that can be produced from surface
Rust programs containing loops, if-else/match statements, and break statements. The resulting
CFG can be quite complex and exercise edge cases in the compiler. However, it is guaranteed to be
always reducible.

Call. When a Call terminator is selected, we pick a random place as the return place, and
a random amount of operands as arguments. Then we add an empty basic block to the current
function as the return target and add a new function using the types of the selected return place and
arguments as the signature. Finally, we set our cursor to the first basic block of this new function.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

Rustlantis: Randomized Differential Testing of the Rust Compiler 340:13

We need to know the return target basic block to know where to resume once we return from
the new function, so we need to maintain a return target stack as a part of Rustlantis’ global state.
The return target is pushed onto the stack whenever a Call terminator is generated.

As discussed above, we also push a new frame to the stack that’s tracked with the place graph,
to record the return place node and all Move arguments generated in the terminator.

Return. When a Return terminator is selected, we must first check the place graph to see if the
return slot (the dedicated local variable RET) is initialized, as it is UB to return from a function with
an uninitialized return slot, even if the return value is never used in the caller. If RET is uninitialized,
we cannot produce a Return terminator, so we select another terminator instead.

Once the function returns, we
(1) Copy the content of RET’s node in the place graph node to the return place.
(2) Pop the last frame off the call stack.
(3) Mark all places contained in locals in the popped frame as deallocated in the place graph (i.e.,

all their fields and elements—nodes behind pointer indirections remain live, of course).
(4) Set our cursor to the return target basic block in the caller and resume generation.

3.4 Representing Memory Layout
The transmute intrinsic is Rust’s form of an unsafe cast (like reinterpret_cast in C++ or
Obj.magic in OCaml). We would like to generate calls to transmute to make sure the compiler
does not do any type-based tracking when that would be incorrect: it is completely okay to write
to some location using one type and then read using a different type, as long as the value stored at
that location is compatible with both types. (This is different from C, where type-based aliasing
restrictions disallow such “type punning”.)
However, generating correct calls to transmute is non-trivial. Types in Rust may contain gaps

between their fields (called padding), and it is Undefined Behavior to read padding. As a consequence,
when transmuting between values of different types, Rustlantis needs to reason about the layout of
source and destination to ensure that we do not read from padding bytes.

However, the default type representation repr(Rust) does not guarantee fixed memory layouts
for tuples and structs. This means that we cannot rely on these types to have any specific size, or
that their elements reside at specific offsets. Figure 7 shows some possible memory layouts of a
type declared as struct MyStruct(i8, i16). Although a specific version of the Rust compiler
may use a fixed layout computation algorithm, this cannot be relied on. Indeed, the Rust compiler
has a flag -Z randomize-layout to make the layout of each type in the default representation
unpredictable.

i8 9-byte padding i16

i16 i8

5-byte padding i8 4-byte padding i16

Fig. 7. Some possible memory layouts of struct MyStruct(i8, i16)

As we are only dealing with types using the default representation, any types that may contain
padding have an indeterminable size and element layout and therefore cannot be transmuted.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

340:14 Qian Wang and Ralf Jung

However, there are types with guaranteed sizes and no paddings. These include primitive integers,
floating points, bool, char, pointers, and arrays of these types (including arrays of arrays).

We say places of these types fit into a run, which represents a contiguous region of memory of a
known size and without padding bytes. The place graph tracks for each node whether it is part of a
run. In the case of arrays, both the array itself and its elements are associated with the same run.
Figure 8 shows a representation of the place graph with runs.

_1:(i8, i16)

i8 i16

.0
.1

Run Run

_2:[i8; 3]

i8i8 i8

[0
] [1]

[2]

Run

Fig. 8. Places pointing to runs

When we are picking the argument to a transmute, we restrict the place candidates to ones that
have an associated Run of the size of the return place where the result will be stored. This ensures
that there is no padding in the input.

transmute has an additional constraint regarding value validity: the bit pattern in the source
must represent a valid value for the destination type. Of the types Rustlantis generates, only bool
and char have restrictions for what their valid bit patterns are. It is possible to uphold this validity
constraint using the known value information, but we have not yet implemented this fine-grained
filtering. For now, we simply prevent transmutations to bool and char types.

3.5 Pointers and References
All relevant information about raw pointers is tracked in our place graph: we know where each
pointer points to, so we can make sure that we only store pointers to allocated memory, and only
load data of the right type.

However, references in Rust are subject to further constraints. While a reference is live, it cannot
dangle (point to deallocated places), and its pointee must be initialized and contain a valid value
for the type. Beyond that, Rust imposes aliasing restrictions on references: mutable references must
be unique and shared references must be read-only. Aliasing models such as Stacked Borrows [12]
or Tree Borrows [31] define what exactly is required to ensure these properties. Roughly speaking,
the idea is that for shared references, the pointee cannot be written (through any pointer) while the
reference is live. For live &mut references, the pointee can be neither read nor written, except through
the &mut reference. A reference is considered live between its creation and last use. Additionally, a
reference-typed function argument is live for the whole duration of the function call.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

Rustlantis: Randomized Differential Testing of the Rust Compiler 340:15

To avoid Undefined Behavior from violating these constraints, Rustlantis performs borrow
tracking during program generation with a simplified version of Stacked Borrows [12]. A borrow
stack is associated with every byte in every run. When a pointer or reference is created with &, a
tag is created to represent this pointer. This tag, along with the type of borrow (raw pointer, shared
reference, or mutable reference) is placed onto the borrow stacks of all bytes in all runs that have
been referenced. This is illustrated by Figure 9.

let x: u8 = 0;

let a = &raw const x; // Tag 1

let b = &x; // Tag 2

let c = &(*a); // Tag 3
Raw, Tag 1

Shared, Tag 2
Shared, Tag 3

Fig. 9. Representation of a borrow stack

A tag in a borrow stack is potentially borrowed from all tags below it. This is imprecise, as a
borrow created later in program order is not necessarily derived from an existing pointer, but it
allows us to track borrows with only a stack instead of a tree.

The borrow stack behaves according to these rules:
When reading, writing, or creating a reference from a pointer, we check
• that the tag exists on the borrow stack (ensuring the pointer is valid), and
• that the tag is not below any mutable reference (ensuring we are not invalidating any mutable
reference).

When writing through a pointer, we additionally check
• that the tag is not above a shared borrow (ensuring this pointer is not potentially derived
from a shared borrow, which would make it illegal to write through this pointer), and

• that the tag is not below any tag associated with a reference-typed function argument
(ensuring we do not invalidate references that must stay live for the duration of a call).

When a place is written, we pop off all tags above the tag used to perform the write.
When a reference-typed value is produced, we check that the pointee isn’t deallocated and

is initialized.

Together, these rules guarantee that Rustlantis does not generate any programs that trigger
Undefined Behavior involving references.

3.6 Pointer Arithmetic
Besides transmute, the other key unsafe operation Rustlantis generates is pointer arithmetic. Specif-
ically, we generate calls to the arith_offset intrinsic, which takes a pointer and an isize offset
as arguments. This intrinsic is never UB to call (its non-intrinsic counterpart, wrapping_offset, is
a safe function). However, it may offset a pointer outside the bounds of its allocation, in which case
that pointer would be UB to dereference.
To track where the pointer points, we choose some places with known values as the offset

argument. However, we do not impose a restriction on its value. We keep track of the offset amount
from its original pointee in the place graph node of each pointer-typed place, accumulating the
offset on each call to arith_offset.
Whenever we are walking the place graph to find place candidates, we only visit dereference

projections of pointers whose effective offset value is zero. The offset value is zero if the pointer has
never been offset, or if all its offsets add up to zero and therefore “roundtripped". This guarantees
that we can dereference the pointer without UB.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

340:16 Qian Wang and Ralf Jung

With information on known values and runs, it is possible to offset pointers to array elements to
other elements within the same array and dereference them while having a non-zero offset. This is
an interesting option for future work.

3.7 Picking “interesting” Places
If place candidates are picked uniformly at random, the resulting program will contain a large
number of unused assignments. In many cases, the LHS of an assignment will never be used
or is overwritten before it is used. Unused assignments are trivially optimized out early in the
compilation pipeline, never exercising the more interesting parts of the compiler.

Additionally, we assume that a complex series of operations is more likely to trigger miscompila-
tions. Therefore, when picking which places should affect the output of the program (see §3.9), we
would like to pick the results of complex operations. Printing a place containing a literal that was
assigned immediately before is not very interesting.
We introduce a measure to represent the data complexity of each place, indicating the amount

and complexity of operations which took place to result in the value in a place. The complexity is
tracked for each node in the place graph, and this complexity is propagated between places through
dataflow. On each assignment, the complexity value of the rvalue is calculated and becomes the
new complexity of the LHS place.

The complexity value of each rvalue is calculated as follows:

• Literal operands have a complexity value of 1.
• Place-based operands take the complexity value from its underlying place.
• & takes the complexity value from its pointee place.
• Other rvalues’ complexity value is the sum of all its operands’.

The complexity of a place with multiple fields (structs and tuples) is the maximum complexity of
its field places.

The complexity of a place is used as a weight in place selection: while picking a place to be read
(such as for an operand), we favor places containing complex data to propagate the complexity.

This means that the complexity of places can accumulate in a positive feedback loop. We cap
the complexity of each place at 100 to prevent some places from having an exceptionally high
complexity and getting chosen every time.

During place candidate selection, the weight of each place is further augmented: we always favor
places containing a dereference projection, and especially favor places dereferencing a pointer that
has been “roundtripped” by pointer offsetting. This makes it likely that we will later dereference an
arithmetically modified pointer, which we expected to be prone to miscompilations (such as Bug #9
in Figure 10).

We perform additional weight augmentations depending on the selection context: if the place is
used as a function argument, we favor places that are pointers (especially those that have been
offset), or places with known values. If the place is selected for the LHS of an assignment, we ignore
its complexity, but favor places that are uninitialized.

3.8 Ensuring Determinism
The biggest difficulty in Rustlantis is generating code that is free of Undefined Behavior. We have
explained how every single step in program generation ensures that all preconditions for the
generated instructions are met, and therefore the resulting program is well-defined. However,
that is not sufficient: we must also avoid introducing non-determinism. Even well-defined Rust
programs can be non-deterministic. If our program is non-deterministic, running it with different

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

Rustlantis: Randomized Differential Testing of the Rust Compiler 340:17

backends can legitimately produce different results, so non-deterministic programs are not suited
for differential testing.
The main source of non-determinism is of course concurrency, but we are only generating

sequential programs, so this is of no concern. Besides concurrency, Rust has two sources of non-
determinism that affect Rustlantis: the addresses that local variables are stored at, and the exact
bit-pattern returned by a floating-point operation that produces a NaN (“not a number”) value. We
saw examples of both in Figure 1.
To ensure that this non-determinism cannot affect program behavior, Rustlantis generates

programs in a way that the non-determinism is contained to values of pointer or float type.
Specifically, we say that any type that contains a pointer or float is non-deterministic, and all
remaining types are deterministic. Concretely, this means we have to avoid the following operations
that could leak data from non-deterministic types to deterministic types:

• pointer-to-int casts and transmutes,
• pointer comparisons, and
• floating-to-int transmutes and operations that expose the sign of a floating point value.

Note that float-to-int casts are fine as those will reliably produce 0 for any NaN value, so the
non-determinism in the NaN bit-pattern cannot affect the resulting integer. Control flow can only
be affected by integers and Booleans (those are the only valid operands for a MIR match), which
are deterministic, so there is no risk of indirect leakage.

3.9 Producing Observable Output
A generated program must expose its runtime state to the outside world. Otherwise, we have no
way of knowing whether the testing backends deviate from each other.

Before we generate a Return terminator, we choose some local variables with deterministic type
weighed by their complexity values and call a gadget function, dump_var, to print them to the
standard output. The gadget takes the function name, and the names and values of four variables
and print them out. It is called multiple times if more than 4 variables are chosen to be dumped,
and a variable of the unit type() is supplied if the number of chosen variables is not a multiple of
4 (the arity 4 is experimentally chosen to be the fastest). We do not print all local variables, as this
will often reduce the amount of possible optimizations, thus reducing the chance of encountering a
miscompilation.

The printed string makes it immediately obvious which variable in which function has a different
value in different testing backends. However, this causes a significant slow down in differential
testing. We use an alternative version of dump_var which hashes the variables and prints the final
hash value once at the end of the program.

To preserve both speed and bug visibility, we observe the fact that the vast majority of programs
do not trigger miscompilations, and will produce the same output whichever dump_var we use,
miscompilations from the small minority of programs should be detectable by both versions of
dump_var. We can have the best of both worlds by using the fast dump_var usually, and when
a different hash is detected, we generate the program with the slow, debug dump_var and run
differential testing again to see the difference with better visibility.

3.10 Summary
In summary, Rustlantis’ tracks the following state during program generation: the so-far generated
program, the cursor, the place graph, the place stack, and the return target stack.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

340:18 Qian Wang and Ralf Jung

In the place graph, nodes represent places and edges represent projections. Each node additionally
keeps track of: its value complexity, a tag (for pointers/references), information about the value
stored in that place, and a set of runs (tracking information about the memory layout).

This lets us basically interpret the program as it is being generated, allowing Rustlantis to generate
deterministic, UB-free, and diverse MIR programs. These programs are effective at triggering bugs
in the Rust compiler, which will be demonstrated in the next section.

4 Evaluation
4.1 Bug Finding
We used the following differential testing backends in our fuzzing campaign:

(1) Ahead-of-time compilation with MIR optimizations and LLVM optimizations & backend.
(2) Ahead-of-time compilation with only LLVM optimizations & backend.
(3) Ahead-of-time compilation with only Cranelift optimizations & backend.
(4) Interpretation with Miri.

All of these backends are managed in the Rust language repository and distributed with the “nightly”
version of the Rust toolchain.

LLVM is the default backend of the Rust compiler. It comes with an extensive optimization
suite and a codegen backend for many targets. On top of that, the Rust compiler also has its own
optimization suite that acts on MIR.
Cranelift [1] is a machine code generator developed by the Bytecode Alliance and is itself

implemented in Rust. rustc can use Cranelift as the code generation backend as an alternative to
LLVM. It is much younger than LLVM and far less widely used, therefore we hypothesized that it
may contain more bugs due to its immaturity.
Rust also has a backend using GCC for code generation. However, that backend is incomplete

and doesn’t support all Rust features yet; at the time we started the project, it was not able to
compile many of the programs we generated, so we did not include it in our fuzzing campaign.
Miri [26] is a Rust interpreter which executes MIR. It can detect and report UB encountered at

runtime. If Miri reports UB on a Rustlantis-generated program, then there is a bug in Rustlantis
and the execution results of the same program from other testing backends must be discarded. This
has occurred during development, but we have fuzzed tens of millions of programs on the most
recent versions of Rustlantis and no UB has been reported. The interpreter used by Miri is shared
with rustc where it is also used as part of MIR optimizations (specifically, constant propagation and
global value numbering), so a bug in Miri can still indicate a potential miscompilation.
The combination of testing backends allows us to detect bugs in rustc’s MIR optimizations,

LLVM, Cranelift, and Miri/const-prop: A bug in rustc can cause backend 1 to be different. A bug in
LLVM can cause backends 1 and 2 to be different. A bug in Cranelift can cause backend 3 to be
different. A bug in Miri/const-prop can cause backends 1 and 4 to be different.

Fuzzing with Rustlantis is trivially parallelizable as multiple instances can be run simultaneously
with different seeds using GNU Parallel [30]. It is therefore well-suited for HPC clusters. We have
been running a fuzzing campaign with Rustlantis on an x86_64-based Linux cluster, and very
occasionally on an Apple Silicon Mac. In total we performed 10 CPU years of fuzzing (two months
worth of wall-clock time) against nightly Rust versions ranging from 2023-03-23 (1459b3128) to
2024-03-03 (516b6162a).

We found 24 unique confirmed bugs, 22 of which have not been previously known. All of these
are correctness bugs or crashes; we have not discovered any hangs. All but two of them have
been fixed at the time of writing. Figure 10 shows all newly discovered bugs in detail as well as a
breakdown of these bugs by their origin.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

Rustlantis: Randomized Differential Testing of the Rust Compiler 340:19

Report Type Origin Description Fixed

1 rust#110902 Crash rustc Assertion failure in RenameReturnPlace Y

2 rust#110947 Miscompilation rustc ConstProp propagates over mutating borrows Y

3 rust#111426 Crash rustc ReferencePropagation prevents partial
initialization Y

4 rust#111502 Miscompilation rustc *const T in function parameters annotated with
readonly

Y

5 rust#112061
llvm#63019 Miscompilation LLVM Aliasing analysis merges loads from

different offsets Y

6 llvm#63013 Crash LLVM Phi nodes assumed to be non-empty Y

7 llvm#63033 Crash LLVM Assertion failure in RegisterCoalescer N

8 rust#112170
llvm#63055 Miscompilation LLVM Constant folding produces invalid boolean values Y

9 rust#112526
llvm#63266 Miscompilation LLVM Aliasing analysis is broken for overflowing

pointer offsets Y

10 rust#112548
llvm#97147 Miscompilation LLVM Lowering of multiplication instruction causes

overflow on AArch64 Y

11 rust#112767
llvm#63430 Miscompilation LLVM Copy elision corrupts stack arguments with

two parts Y

12 llvm#63475 Miscompilation LLVM Copy elision reads stack arguments from the
wrong offsets Y

13 rust#113407 Miscompilation rustc Subnormal f64 to f32 cast is wrong Y

14 llvm#64897 Miscompilation LLVM Incorrect size merging for MustAlias sets Y

15 rust#117355 Crash rustc MIR inlining inserts statements at the wrong place Y

16 rust#118328 Miscompilation rustc ConstProp propagates over assignment of
unknown values Y

17 llvm#74890 Miscompilation LLVM Bad undef and poison handling in InstCombine Y

18 cg_clif#1455
cranelift#7865 Crash Cranelift Multiplication with out of bounds shift panics Y

19 rust#120613 Miscompilation rustc GVN merges moved function arguments Y

20 llvm#82884 Miscompilation LLVM GVNPass forgets to remove poison generating
flags Y

21 cg_clif#1460
cranelift#7999 Miscompilation Cranelift Misoptimization of imul with ireduce Y

22 rust#121996
llvm#84025 Miscompilation LLVM InstCombine calculates wrong insertelement

instructions Y

Miscompilation Crash

rustc 5 3

LLVM 10 2

Cranelift 1 1

Fig. 10. All previously-unknown bugs discovered by Rustlantis, and a breakdown by component.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

https://github.com/rust-lang/rust/issues/110902
https://github.com/rust-lang/rust/issues/110947
https://github.com/rust-lang/rust/issues/111426
https://github.com/rust-lang/rust/issues/111502
https://github.com/rust-lang/rust/issues/112061
https://github.com/llvm/llvm-project/issues/63019
https://github.com/llvm/llvm-project/issues/63013
https://github.com/llvm/llvm-project/issues/63033
https://github.com/rust-lang/rust/issues/112170
https://github.com/llvm/llvm-project/issues/63055
https://github.com/rust-lang/rust/issues/112526
https://github.com/llvm/llvm-project/issues/63266
https://github.com/rust-lang/rust/issues/112548
https://github.com/llvm/llvm-project/issues/97147
https://github.com/rust-lang/rust/issues/112767
https://github.com/llvm/llvm-project/issues/63430
https://github.com/llvm/llvm-project/issues/63475
https://github.com/rust-lang/rust/issues/113407
https://github.com/llvm/llvm-project/issues/64897
https://github.com/rust-lang/rust/issues/117355
https://github.com/rust-lang/rust/issues/118328
https://github.com/llvm/llvm-project/issues/74890
https://github.com/rust-lang/rustc_codegen_cranelift/issues/1455
https://github.com/bytecodealliance/wasmtime/issues/7865
https://github.com/rust-lang/rust/issues/120613
https://github.com/llvm/llvm-project/issues/82884
https://github.com/rust-lang/rustc_codegen_cranelift/issues/1460
https://github.com/bytecodealliance/wasmtime/issues/7999
https://github.com/rust-lang/rust/issues/121996
https://github.com/llvm/llvm-project/issues/84025

340:20 Qian Wang and Ralf Jung

16 out of the 22 previously-unknown bugs are miscompilations, the most serious type of compiler
bug. LLVM contained the most bugs, which is unsurprising as it is the most complicated part of
the compilation pipeline by far. Despite being new, Cranelift held up well with only two bugs
discovered by Rustlantis, thus rejecting our hypothesis that it might be less mature than the more
established LLVM backend.

4.2 Bug Examples
We discuss some of the previously-unknown bugs discovered by Rustlantis.

Bug #2: Constant propagation across mutating pointer. This is a miscompilation in rustc’s MIR
optimization. The reduced MIR was rewritten into this surface Rust function:
1 pub fn fn0() -> bool {

2 let mut pair = (1, false);

3 let ptr = &raw mut pair.1;

4 pair = (1, false);

5 unsafe {

6 *ptr = true;

7 }

8 let ret = !pair.1;

9 return ret;

10 }

fn0 should return true, but instead it returned false. This is due to Rust’s ConstProp MIR
optimization incorrectly propagating the constant value of pair.1 (false) from line 4 to line 8
despite the mutation through a pointer on line 6.

Bug #8: undef in booleans. This is an LLVM bug with a 3-line minimal reproducing example:
1 define i64 @test(double %arg) {

2 %cmp = fcmp une double 0x7FF8000000000000, %arg

3 %ext = zext i1 %cmp to i64

4 ret i64 %ext

5 }

0x7FF8000000000000 is a NaN (not-a-number) bit pattern under the IEEE-754 double-precision
floating-point format. The instruction fcmp une checks if the operands are not equal. The value of
%cmp should be true as NaN does not equate anything (not even itself), therefore the function should
return 1.
However, LLVM 16.0.4 generates code that always returns 255. This is due to the fcmp une

instruction being incorrectly folded into an undef constant, which turn into any bit pattern.

Bug #21: Combination of multiplication and integer conversion. This is the first and only miscom-
pilation Rustlantis has found in Cranelift. The reproducing example was manually reduced to a
small function in Cranelift IR:
1 function u0:11(i8) -> i8 system_v {

2 block0(v0: i8):

3 v1 = uextend.i64 v0 ; Zero-extend v0 to i64

4 v2 = imul_imm v1, 256 ; Multiply by 256

5 v3 = ireduce.i8 v2 ; Convert back to i8 by discarding the most significant bits

6 return v3

7 }

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

Rustlantis: Randomized Differential Testing of the Rust Compiler 340:21

This function should always return 0: after a 64-bit integer is multiplied by 256 on line 4, the
least significant 8 bits are all 0, so the conversion on line 5 should always result in zero. However,
due an unexpected interaction between two rewriting rules, the optimized IR returns the function
argument unchanged.

4.3 Time to First Bug
Our fuzzing campaign was performed with evolving versions of Rustlantis and rustc. The metrics
gathered from this campaign have too many variables to allow any meaningful conclusions. To
gather a more meaningful estimate of how long it takes Rustlantis to find a bug, we conducted a
controlled experiment: we generated 100,000 random programs using the latest version of Rustlantis
and performed differential testing on 11 historical Rust nightly toolchain versions. We gathered the
number of bug-triggering programs for each Rust version, and calculated the statistically expected
time to first bug (measured in number of programs). The results are presented in Figure 11.

Rustlantis’ ability to trigger bugs fluctuates significantly across compiler versions. This is likely
due to different bugs being fixed and introduced in different Rust versions. In earlier versions of
rustc, we often get hundreds of examples failing due to the same root cause. In later versions, bugs
become harder to hit; it is quite common to only see the first bug well after 100,000 programs have
been tested, and some bugs are exhibited only once. For comparison, the Csmith authors [35] report
a bug rate of 0.0024% on the latest LLVM version (2.8) they have tested, which means an expected
time-to-first-bug of about 41,000 programs.

4.4 Code Coverage
Here, we compare branch coverage and line coveragemetrics between Rustlantis and RustSmith [28],
which to our knowledge is the only other Rust fuzzer aimed at finding code generation correct-
ness bugs. In terms of bug-finding effectiveness, Rustlantis outperforms RustSmith: RustSmith
rediscovered 5 already known bugs but was not able to find any new bugs in rustc.

Code coverage is often used to measure a fuzzer’s effectiveness at finding bugs [3]. We generated
200 random programs with both Rustlantis and RustSmith using the 2024-03-23 nightly version of
the Rust compiler on x86_64, and measured the cumulative branch and line coverage from compiling
these programs (Figure 12). We are most interested in code coverage in the rustc_mir_transform
crate in Rust, and lib/Analysis, lib/Transform, lib/Codegen, and lib/Target directories in
LLVM, as these represent the root cause of almost all bugs discovered by Rustlantis, and are the
most correctness-critical yet error-prone parts of the compiler.
Despite being a far more effective fuzzer in terms of bugs found, Rustlantis exercises a slightly

smaller proportion of Rust and LLVM’s codebase. This confirms the observation [35, 21] that code
coverage is not a goodmetric for comparing fuzzers for compilers, likely because themetric is unable
to capture the subtle invariants and relations that actually determine whether an optimization is
working correctly. The results also show that overall coverage is rather low, in particular in LLVM,
probably because of optimization passes that are not enabled by rustc.

4.5 Resource Usage
On a single core of AMD EPYC™ 9654, the median time for Rustlantis to generate a program is 0.20
second, and it takes further 2.79 seconds to perform differential testing against the four testing
backends sequentially. 95% of the programs are generated by Rustlantis using less than 24 KB of
memory, and tested using less than 1.3 GB of memory.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

340:22 Qian Wang and Ralf Jung

Toolchain Miscompilations Crashes Bug rate (%) Exp. first bug

2023-05-01 2,122 619 2.741 36
2023-06-01 0 2 0.002 50,000
2023-07-01 0 2 0.002 50,000
2023-08-01 0 2 0.002 50,000
2023-09-01 5,315 2 5.317 19
2023-10-01 0 2 0.002 50,000
2023-11-01 3 99 0.102 980
2023-12-01 0 2 0.002 50,000
2024-01-01 0 2 0.002 50,000
2024-02-01 0 0 0.000 > 100,000
2024-03-01 0 0 0.000 > 100,000

Fig. 11. # of bug-triggering programs in historical Rust versions, out of the same 100,000 generated programs

(a) Branch coverage of rustc_mir_transform (b) Line coverage of rustc_mir_transform

(c) Branch coverage of LLVM backend (d) Line coverage of LLVM backend

Fig. 12. Coverage of the relevant parts of the Rust compiler and LLVM

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

Rustlantis: Randomized Differential Testing of the Rust Compiler 340:23

5 Related Work
The recent survey by Chen et al. [4] gives a good overview of current techniques used for compiler
testing. Here we compare directly with the most relevant pieces of prior work: program generators
for Rust and other languages, as well as the alternative approach of mutation-based testing.

Rust program generation. RustSmith [28] was already mentioned above as the only fuzzer we are
aware of that aims to detect miscompilation bugs in rustc. The main difference in our approach is
that RustSmith generates safe Rust, as opposed to Rustlantis which generates MIR that generally
can only be obtained by writing unsafe Rust. In fact, Rustlantis often generates MIR that does
not correspond to any Rust program—but it is still crucial to ensure the correct treatment of such
MIR, since it could be the result of earlier optimization passes. RustSmith was not able to find any
previously-unknown bugs in rustc, but it was able to re-discover five bugs that had already been
discovered before, and it found new bugs in mrustc, an alternative Rust compiler written in C++.
Rustlantis cannot fuzz mrustc as mrustc is not based on MIR.
Pearce [25] defines a core calculus for Rust-style type and borrow checking, and uses that to

fuzz-test the Rust frontend. They found at least one bug in the borrow checker; however, code
generation bugs are out of scope for this work.

AFL and libFuzzer are general-purpose fuzzing libraries that have been used to generate random
Rust programs [2]. These programs are not necessarily well-formed. This approach has been
effective at discovering panic, infinite loop, and out-of-memory bugs, thus covering a disjoint part
of the compiler compared to Rustlantis.

Dewey et al. [6] use Constraint Logic Programming to generate well-typed Rust programs. Their
approach was able to discover precision, soundness, and consistency bugs in Rust’s typechecker,
but it did not probe the codegen backend.

Generating programs for other languages. Csmith [35] generates deterministic and UB-free C
programs and has found numerous bugs in the optimization pipeline and backend of multiple C
compilers. It has been the original inspiration for Rustlantis. Csmith uses a form of static dataflow
analysis combined with safe wrappers around unsafe operations (such as signed integer arithmetic,
where overflow would lead to UB in C) to ensure that the program does not cause Undefined
Behavior. This analysis is comparable to Rustlantis’ place graph, but less precise. On the one hand,
this means there are programs that Rustlantis generates where a static analysis may lose track
of what exactly the set of aliases of some pointer is. Rustlantis also avoids the need for wrapper
functions and can directly invoke unsafe operations while being sure that their preconditions are
met. On the other hand, this means Csmith can generate programs with loops that are executed
more than once, and functions that are called more than once.
CsmithEdge [8] builds on Csmith but instead of excluding UB by construction during program

generation, they use dynamic UB detection techniques to determine whether the program has UB
once it is generated. For Rustlantis, this means we could generate, e.g., divisions or transmute
calls without worrying about whether the result is well-defined or not. We could use Miri for UB
detection. However, we would want to avoid generating too many programs that have UB, as
running Miri takes some time and those programs cannot be used to find correctness bugs.
Nagai et al. [23] generate random C programs that are free of Undefined Behavior. However, it

focuses on finding bugs in arithmetic optimizations.
YARPGen [20] improves on Csmith by avoiding the need for wrappers to ensure safety of signed

integer arithmetic. The approach is similar to Rustlantis: for mixed variables, i.e., those that are
both read and written by the generated program, the tool tracks their exact current value. Mixed
variables are also never used in loops. Rustlantis, in contrast, can generate control-flow that looks

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

340:24 Qian Wang and Ralf Jung

like a loop to the compiler, and still track the contents of all variables as the tool knows that the loop
is only taken once. In the future it would be interesting to explore adding some of YARPGen’s loop
generation features to Rustlantis, and thus generate loop with dedicated induction and reduction
variables that otherwise work on data which does not change during the loop execution.

Hansson [11] explore random code generation for a language even later in the compilation
pipeline than MIR or LLVM IR: they generate random programs in LLVM MIR, the Machine
Intermediate Representation that is used for instruction selection. They were able to find several
crash bugs, but the programs they generate may contain Undefined Behavior and non-determinism,
which makes it impossible to find code generation correctness bugs. Their approach to control-flow
graph generation is a bit different from ours: where our CFG is reducible by construction (despite
being more general than what can be directly obtained with loops and conditionals), they generate
a random CFG and then make it reducible by applying suitable graph transformations.
Ofenbeck et al. [24] generate random programs in a user-defined DSL to find bugs in the DSL

compiler. However, they assume that all generated program are well-defined and deterministic; as
such, this approach is not suited for languages like C or MIR where program generation has to be
careful to avoid Undefined Behavior and non-determinism.
Recent work has attempted to use machine learning techniques to generate random programs

for compiler testing [5, 19, 34]. While these program generators are getting better and better at
producing syntactically valid programs, they are still nowhere close to ensuring properties such as
well-defined behavior and determinism, and as such are not suited for finding correctness bugs.

Mutation-based testing. Instead of generating random programs entirely from scratch, mutation-
based approaches work by changing existing test cases. This turns out to be extremely effective.

Icemaker [13] is a tool for finding Rust compiler bugs that runs continuously. It often finds new
crash bugs within hours of them landing in the compiler, and is responsible for a significant fraction
of the recent crash reports for rustc. However, it cannot find code generation correctness bugs.

Equivalence Modulo Inputs [15, 16, 29] refers to a class of fuzzers that mutate an existing program
in a way that does not change the observable behavior under a given input, such as by applying
arithmetic identities or mutating dead code. This may trigger different optimizations in live code
paths, and has found a large number of miscompilation bugs in GCC and clang/LLVM—more than
any of the generation-based approaches, as far as we know. (And yet, generation-based approaches
still find new bugs, even after equivalence modulo inputs reached saturation.) Rustlantis’ decoy
basic blocks can be seen as a lightweight form of EMI, where the fuzzer knows that the code is
dead and can hence produce arbitrary syntactically valid code.

6 Conclusion and Future Work
We have presented Rustlantis, a new program generator for fuzzing the Rust compiler. Rustlantis can
generate a wide range of programs, including those that use unsafe features such as raw pointers,
mixing pointers and references, pointer arithmetic, and transmute. The combination of directly
building a control-flow graph, tracking knowledge about the current program state in a place graph,
and adding decoy blocks to confuse the optimizer enabled Rustlantis to find 22 previously unknown
bugs in rustc: 6 crashes and 16 incorrect compilation results. This makes Rustlantis the first fuzzer
that was able to find any new code generation correctness bugs in the official Rust compiler.

Despite this successful result, there are various ways in which Rustlantis could be improved.

6.1 Generating a Larger Variety of Rust Programs
Rustlantis does not generate some common constructs in Rust, such as: unions, recursive types,
heap-allocated (Box) types, zero-sized types, manually dropped types, non-#[repr(Rust)] types,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

Rustlantis: Randomized Differential Testing of the Rust Compiler 340:25

and many more. Supporting these constructs could exercise more of the compiler and thus find
more bugs. In particular, repr(C) types would be interesting as they have a guaranteed layout, so
they could be used to generate more complicated invocations of transmute.
Speaking of unsafe operations, as already mentioned the support for pointer arithmetic in

Rustlantis is limited in that pointers are only accessed if the cumulative offset is zero. Support for
doing pointer arithmetic to other array elements or fields of repr(C) structs would have a greater
chance of confusing the compiler. Likewise, it would be interesting to be able to generate offset
operations, which is a form of pointer arithmetic that requires the pointer to stay in-bounds of the
allocation and thus lets the compiler deduce further information.

Another key unsafe operation is a pointer type cast, where memory is accessed under a different
type than the one with which it was originally initialized. This is comparable to transmute, but
does not perform a copy—the same memory can now be accessed under two different types, which
would be challenging to track in the place graph, but also has good potential of triggering further
compiler bugs.
Finally, it would be interesting to extend Rustlantis with support for generating generic code.

That would let us test whether MIR optimizations (which are applied before monomorphization)
handle such code correctly.

6.2 Better Exploring the Space of Possible Programs
Rustlantis implicitly defines a space of possible programs and a decision tree to randomly pick a
sample from that space. Currently, this strategy is rather naive; there is no attempt to cover the
space of programs uniformly, or to use feedback from the testing process to guide the exploration
to other parts of the space (e.g., coverage-guided fuzzing). It would be interesting to explore such
options in the future.
Another possibility is to employ Swarm Testing [10], where a set or “swarm” of samples is

generated, each of which focuses on a different part of the program space.

6.3 Automated Program Reduction
Rustlantis-generated programs are too long to be directly used in a bug report. As a result, if a
generated program triggers a bug, it must be reduced to a far smaller minimal complete verifiable
example (MCVE). This is also sometimes called test-case shrinking. We have primarily reduced the
test cases manually, with the help of a very simple script that comments out one line at a time and
checks whether the bug is still reproducible. This script is naive and inefficient. When the bug is in
LLVM and we were able to isolate a reproduction in LLVM IR form, we used llvm-reduce [9] to
minimize the IR. However, this tool can sometimes introduce Undefined Behavior during reduction
and thus invalidate the test program. Many sophisticated techniques have been proposed in prior
work [27, 4]; adopting them to MIR programs could make the production of an MCVE a lot simpler.

Data-Availability Statement
Rustlantis’ source code is maintained on GitHub [32]. A Docker image containing Rustlantis and
the scripts used for §4 is permanently archived on Zenodo [33].

Acknowledgments
We thank the Rust compiler developers and in particular Nikita Popov for being extremely quick at
fixing the bugs we found, which was crucial for the fuzzing campaign to continue and discover
other bugs. The fuzzing campaign was primarily performed on the Euler cluster of ETH Zurich.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

340:26 Qian Wang and Ralf Jung

References
[1] Bytecode Alliance. 2018. Cranelift Code Generator. https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
[2] Rust Fuzzing Authority. 2017. rust-fuzz. https://github.com/rust-fuzz/trophy-case
[3] Marcel Böhme, László Szekeres, and Jonathan Metzman. 2022. On the Reliability of Coverage-Based Fuzzer Benchmark-

ing. In Proceedings of the 44th International Conference on Software Engineering (ICSE’22). http://seclab.cs.stonybrook.
edu/lszekeres/Papers/ICSE22.pdf

[4] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and Lu Zhang. 2020. A Survey of
Compiler Testing. ACM Comput. Surv. 53, 1, Article 4 (2 2020), 36 pages. https://doi.org/10.1145/3363562

[5] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018. Compiler fuzzing through deep
learning. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2018, Amsterdam, The Netherlands, July 16-21, 2018, Frank Tip and Eric Bodden (Eds.). ACM, 95–105. https://doi.org/10.
1145/3213846.3213848

[6] Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the Rust Typechecker Using CLP (T). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE). 482–493. https://doi.org/10.1109/ASE.
2015.65

[7] Eric Eide and John Regehr. 2008. Volatiles are miscompiled, and what to do about it. In Proceedings of the 8th ACM
& IEEE International conference on Embedded software, EMSOFT 2008, Atlanta, GA, USA, October 19-24, 2008, Luca
de Alfaro and Jens Palsberg (Eds.). ACM, 255–264. https://doi.org/10.1145/1450058.1450093

[8] Karine Even-Mendoza, Cristian Cadar, and Alastair F. Donaldson. 2022. CsmithEdge: more effective compiler testing by
handling undefined behaviour less conservatively. Empir. Softw. Eng. 27, 6 (2022), 129. https://doi.org/10.1007/S10664-
022-10146-1

[9] Diego Treviño Ferrer. 2019. LLVM-Reduce for testcase reduction. (2019). https://llvm.org/devmtg/2019-10/talk-
abstracts.html#tech22 2019 LLVM Developers’ Meeting.

[10] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. 2012. Swarm testing. In ISSTA. ACM, 78–88.
[11] Bevin Hansson. 2015. Random Testing of Code Generation in Compilers. Master’s thesis. Royal Institute of Technology,

Stockholm. https://robcasloz.github.io/teaching/BevinHansson_2015.pdf
[12] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2019. Stacked borrows: an aliasing model for Rust. Proc.

ACM Program. Lang. 4, POPL, Article 41 (dec 2019), 32 pages. https://doi.org/10.1145/3371109
[13] Matthias Krüger. 2020. icemaker. https://github.com/matthiaskrgr/icemaker
[14] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: a verified implementation of

ML. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 179–192. https://doi.org/10.
1145/2535838.2535841

[15] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via Equivalence modulo Inputs. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (Edinburgh, United Kingdom)
(PLDI ’14). Association for Computing Machinery, New York, NY, USA, 216–226. https://doi.org/10.1145/2594291.
2594334

[16] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via guided stochastic program mutation.
In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, Jonathan Aldrich and
Patrick Eugster (Eds.). ACM, 386–399. https://doi.org/10.1145/2814270.2814319

[17] Xavier Leroy. 2009. A formally verified compiler back-end. JAR 43, 4 (2009), 363–446. https://doi.org/10.1007/s10817-
009-9155-4

[18] Xavier Leroy. 2023. The CompCert C verified compiler - Documentation and user’s manual. https://compcert.org/
man/manual.pdf

[19] Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. DeepFuzz: Automatic Generation of Syntax Valid C
Programs for Fuzz Testing. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press,
1044–1051. https://doi.org/10.1609/AAAI.V33I01.33011044

[20] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing for C and C++ compilers with YARPGen.
Proc. ACM Program. Lang. 4, OOPSLA, Article 196 (nov 2020), 25 pages. https://doi.org/10.1145/3428264

[21] Michaël Marcozzi, Qiyi Tang, Alastair F. Donaldson, and Cristian Cadar. 2019. Compiler fuzzing: how much does it
matter? Proc. ACM Program. Lang. 3, OOPSLA, Article 155 (oct 2019), 29 pages. https://doi.org/10.1145/3360581

[22] William M McKeeman. 1998. Differential testing for software. Digital Technical Journal 10, 1 (1998), 100–107.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://github.com/rust-fuzz/trophy-case
http://seclab.cs.stonybrook.edu/lszekeres/Papers/ICSE22.pdf
http://seclab.cs.stonybrook.edu/lszekeres/Papers/ICSE22.pdf
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3213846.3213848
https://doi.org/10.1145/3213846.3213848
https://doi.org/10.1109/ASE.2015.65
https://doi.org/10.1109/ASE.2015.65
https://doi.org/10.1145/1450058.1450093
https://doi.org/10.1007/S10664-022-10146-1
https://doi.org/10.1007/S10664-022-10146-1
https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech22
https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech22
https://robcasloz.github.io/teaching/BevinHansson_2015.pdf
https://doi.org/10.1145/3371109
https://github.com/matthiaskrgr/icemaker
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://compcert.org/man/manual.pdf
https://compcert.org/man/manual.pdf
https://doi.org/10.1609/AAAI.V33I01.33011044
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3360581

Rustlantis: Randomized Differential Testing of the Rust Compiler 340:27

[23] Eriko Nagai, Atsushi Hashimoto, and Nagisa Ishiura. 2014. Reinforcing Random Testing of Arithmetic Optimization
of C Compilers by Scaling up Size and Number of Expressions. IPSJ Trans. Syst. LSI Des. Methodol. 7 (2014), 91–100.
https://doi.org/10.2197/IPSJTSLDM.7.91

[24] Georg Ofenbeck, Tiark Rompf, and Markus Püschel. 2016. RandIR: differential testing for embedded compilers. In
Proceedings of the 7th ACM SIGPLAN Symposium on Scala, SCALA@SPLASH 2016, Amsterdam, Netherlands, October 30
- November 4, 2016, Aggelos Biboudis, Manohar Jonnalagedda, Sandro Stucki, and Vlad Ureche (Eds.). ACM, 21–30.
https://doi.org/10.1145/2998392.2998397

[25] David J. Pearce. 2021. A Lightweight Formalism for Reference Lifetimes and Borrowing in Rust. ACM Trans. Program.
Lang. Syst. 43, 1 (2021), 3:1–3:73. https://doi.org/10.1145/3443420

[26] The Rust Project. [n. d.]. Miri. https://github.com/rust-lang/miri.
[27] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-case reduction for C

compiler bugs. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12, Beijing,
China - June 11 - 16, 2012, Jan Vitek, Haibo Lin, and Frank Tip (Eds.). ACM, 335–346. https://doi.org/10.1145/2254064.
2254104

[28] Mayank Sharma, Pingshi Yu, and Alastair F. Donaldson. 2023. RustSmith: Random Differential Compiler Testing for
Rust. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (Seattle, WA,
USA) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA, 1483–1486. https://doi.org/10.1145/
3597926.3604919

[29] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live code mutation. In Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016, Eelco Visser and Yannis
Smaragdakis (Eds.). ACM, 849–863. https://doi.org/10.1145/2983990.2984038

[30] Ole Tange. 2023. GNU Parallel 20230822 (’Chandrayaan’). https://doi.org/10.5281/zenodo.8278274 GNU Parallel is a
general parallelizer to run multiple serial command line programs in parallel without changing them..

[31] Neven Villani. 2023. Tree Borrows. Master’s thesis. ENS Paris-Saclay. https://github.com/Vanille-N/tree-borrows/blob/
eeb44c2509a6fa3f6e55f4bd75f5fd416a576676/half/main.pdf

[32] Andy Wang. 2023. Rustlantis. https://github.com/cbeuw/rustlantis
[33] Andy Wang and Ralf Jung. 2024. Reproduction Image for Article ‘Rustlantis: Randomized Differential Testing of the

Rust Compiler’. https://doi.org/10.5281/zenodo.12670660
[34] Haoran Xu, Yongjun Wang, Shuhui Fan, Peidai Xie, and Aizhi Liu. 2020. DSmith: Compiler Fuzzing through Generative

Deep Learning Model with Attention. In 2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow,
United Kingdom, July 19-24, 2020. IEEE, 1–9. https://doi.org/10.1109/IJCNN48605.2020.9206911

[35] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. SIGPLAN
Not. 46, 6 (jun 2011), 283–294. https://doi.org/10.1145/1993316.1993532

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 340. Publication date: October 2024.

https://doi.org/10.2197/IPSJTSLDM.7.91
https://doi.org/10.1145/2998392.2998397
https://doi.org/10.1145/3443420
https://github.com/rust-lang/miri
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/3597926.3604919
https://doi.org/10.1145/3597926.3604919
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.5281/zenodo.8278274
https://github.com/Vanille-N/tree-borrows/blob/eeb44c2509a6fa3f6e55f4bd75f5fd416a576676/half/main.pdf
https://github.com/Vanille-N/tree-borrows/blob/eeb44c2509a6fa3f6e55f4bd75f5fd416a576676/half/main.pdf
https://github.com/cbeuw/rustlantis
https://doi.org/10.5281/zenodo.12670660
https://doi.org/10.1109/IJCNN48605.2020.9206911
https://doi.org/10.1145/1993316.1993532

	Abstract
	1 Introduction
	2 Background
	2.1 Differential Testing
	2.2 Mid-level Intermediate Representation (MIR)

	3 Rustlantis
	3.1 Statements and Declarations
	3.2 Keeping Track of Places
	3.3 Terminators
	3.4 Representing Memory Layout
	3.5 Pointers and References
	3.6 Pointer Arithmetic
	3.7 Picking ``interesting'' Places
	3.8 Ensuring Determinism
	3.9 Producing Observable Output
	3.10 Summary

	4 Evaluation
	4.1 Bug Finding
	4.2 Bug Examples
	4.3 Time to First Bug
	4.4 Code Coverage
	4.5 Resource Usage

	5 Related Work
	6 Conclusion and Future Work
	6.1 Generating a Larger Variety of Rust Programs
	6.2 Better Exploring the Space of Possible Programs
	6.3 Automated Program Reduction

	Acknowledgments
	References

