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Abstract

Typical intermediate representations used by compilers maintain a total order on memory
operations. This means that memory access reordering is only done within an opti-
misation phase and must be explicitly combined with other analyses. We describe an
intermediate language based on alias information which can represent absence of de-
pendencies between memory operations. This enables all transformations to soundly
reorder memory operations based solely on the structure of the program. The language
is accompanied by a notion of well-typedness which supports proofs of correctness for
transformations relaxing the dependencies between memory operations. Moreover, there
always exists an easy translation to machine code for well-typed programs.
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Chapter 1

Introduction

Intermediate languages are used to decouple optimisations and code generation from the
source language. They abstract away from details which are not needed for compilation,
while typically having much more structure than the target language. For example,
intermediate languages can discard the precise order in which computations were originally
written down:

s, 3\ /5 2\*/4

X = a = 2%4;
y = 2%4; —> + — b = 3+5;
Z = X7y, \ / c = b-a;

The graph preserves all the relevant information — which operations are performed
on which operands. Variable names and the original order of execution are forgotten.
Of course, the operands must be evaluated before the operations using them. Instead
of the original total order, the graph defines a partial order. To convert the graph back
to a textual program, we can choose any total order that respects the partial order.
All the programs we obtain this way have the same behaviour as the original program.
Therefore, reordering operations on which the graph inflicts no order is inherent to the
representation: No further justification is needed to prove that semantics are preserved.
Similar graphs can be used to represent entire programs, as described by Click in his
idea of a ‘sea of nodes’ |[CP95].

However, this approach does not work well for memory access. Without further
knowledge concerning the values of pointers, memory operations must not be reordered.
Two subsequent store operations on the same location must keep their order, while two
store operations on different locations can be reordered.

ifa #b
store(b, w);
—=

store(a, v);

store(a, v); intermediate
store(b, w); : representation

In these program snippets, the value of v is written to the memory location denoted by a,
and the value of w is written to the memory cell referenced by b.
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In case we do not know whether a and b take the same value, it makes a difference
which store is performed later. As the statements must not be swapped, it is important
to remember their original order in the intermediate representation, for example:

a\ /V b\ /w

store\ b / L store T / v
store store

If, however, we assume that a and b never take the same value when the program is
run, the two store operations of the example are independent of each other. We may
then use the same graph for both programs, thus making reordering of the operations
inherent to the language.

In this thesis we present an intermediate language called IL/M which can express
independence of memory accesses. IL/M is able to represent a subset of C without
compound types or pointer arithmetic. Notably, it does not enforce memory safety, i.e.,
it can model memory access to invalid locations. It is an extension of IL/F by Schneider
[Sch13], an intermediate language designed to justify the translation between low-level
register transfer languages and high-level functional languages.

To obtain the necessary information about pointer values, we assume that we are
given the results of an alias analysis [Cou86; SWHO09, Sect. 1.11; RL12]. Such an analysis
computes relations on values of pointer variables (namely, equality and/or inequality)
which hold for each program execution. That information provides the justification to
reorder memory operations, so we encode it in IL/M such that it remains available.

To ensure that program behaviour is left unchanged, we present a type system
for IL/M enforcing the presence of alias information which is needed to justify the
independence of memory operations. As long as the resulting program is well-typed,
adding or removing memory dependencies does not change program behaviour. This can
be used by a transformation which relaxes the order on memory operations to justify that
it preserves program semantics. Two memory operations which are not ordered can be
swapped without further justification. This transformation is inherent to the language,
similar to how independent arithmetic computations can be conducted in arbitrary order.

Abstracting away from unnecessary details of the source language makes it easier to
perform analyses and optimisations. This is one of the major reasons why intermediate
languages are used in compilers. We hope that by relaxing the order of memory accesses
where possible, the compiler gains more opportunity for optimisation. Besides, the
compiler ultimately has to choose a total order for the program to emit machine code.
During that phase, having a partial order on memory accesses allows for more choice and
thus more optimisation.

The work of this thesis is formalised and verified using the Coq theorem proverE We
follow the convention that theorems, lemmas and corollaries presented in this thesis were
proven in Coq, while conjectures just come with the proof sketch given here.

"We used Coq 8.4, which can be found at http://coq.inria.fr/.


http://coq.inria.fr/

1. Introduction

1.1 Contribution

We describe IL/M, a language based on functional stores with inherent support for re-
ordering independent memory operations. Our language can be used for source languages
which are not memory safe, for example C.

Furthermore, we present a type system for IL/M which supports program transfor-
mations that add or remove memory dependencies. The type system is based on alias
information annotated at the program. We show that two well-typed programs performing
the same operations, but having different dependencies between memory operations, are
semantically equivalent. The type system enforces the presence of dependencies between
memory accesses unless their independence can be derived from the alias information.
This property also ensures that the program can be easily translated to machine code,
despite the use of functional stores.

To the best of our knowledge, no type system using alias information to justify
independence of memory operations and realisability of functional stores on real machines
has been described before.

1.2 Outline

Chapter [2| covers related work we built on to design IL/M, most notably graph-based
program representations, different memory models and operations affecting memory.

In Chapter 3, we present IL/M, the language used throughout the thesis. We formalise
the semantics of the language and explain why it can model the memory behaviour of C.

Chapter [4] describes the type system on an intuitive level and explains the safety
guarantees it provides. Then we give the formal definition of well-typedness.

In Chapter 5 we discuss properties of well-typed programs. This includes type safety,
and the fact that two well-typed programs differing only in the organisation of their
memory dependencies are semantically equivalent.

Finally, Chapter |§| presents the formalisation of IL/M and the theorems we presented
in Coq. We evaluate whether the language can fulfil its promises based on a real-world
alias analysis.






Chapter 2

Related Work

In this chapter, we discuss previous work concerning memory representations and opera-
tions. We explain how graph-based program representations express memory dependencies.
To relax such dependencies, an operation which subdivides a memory in two parts can
be used. This requires reasoning about properties of memories, hence we introduce
separation logic and capabilities, two approaches to formalise this reasoning.

2.1 Memory Representations

Typical intermediate representations for imperative source languages [ASU86, Chap. 8;
Muc97, Chap. 4] rely on an implicit memory. This means that the memory is never
explicitly mentioned in the source code. Such a language is also used by CompCert
[Ler09b; Ler09aj, a complete formal verification of a realistic C compiler in Coq.

store(a, v);
store(b, w);

Using implicit memory has the advantage of being close to the behaviour of actual
machines, and also often close to how memory operations are handled in the source
language. The translation from source to intermediate language is simple, and it is well
understood that the semantics is preserved.

An alternative is to use functional stores [Str00, Sect. 3.3.2]: The memory is an
explicit, immutable mapping from locations to values. Memory operations consume and
produce such objects just like arithmetic operations consume and produce integers. The
result of a store operation is a new memory, used by the next memory operation. Above
example could be written as follows (using functional notation now, since we are dealing
with a functional approach):

let m’ = store m a v in
let m’’ = store m’ b w in
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2.2 Representing the Program as a Graph

Graph-based program representations like the control flow graph |[Pro59; All70] or the
program dependence web [OBM90] are often employed to facilitate dataflow analyses
and optimisations.

Another example, which we will discuss briefly in the following, is the ‘Sea of Nodes’
[CP95|, which has been implemented by the FIRM intermediate representation [BBZ11].
The idea is to represent operations of the program using nodes and let edges denote
operands. Recall the initial example for functional stores:

m a v - .
\ T ///” let m’ = store m a v in
store“ D W let m’’ = store m’ b w in
T/ /
store «~-._ -7

Variables which are free in the program (not bound by any let) also appear as nodes
in the graph. Edges point to where the operand values come from, which is either a
previous operation or a free variable. This makes the flow of data visible. In the graph,
one can easily see that the second store makes use of the result of the first one. If
imperative memory would be used, this dependency would not be immediately visible.
An extra edge would have to be added to ensure that the two store are ordered properly.

Since the effect of each operation is completely described by its operands, no semantic
information is lost when translating from a program to a graph. It follows immediately
that two programs corresponding to the same graph, i.e., two different linearisations
respecting the partial order induced by the graph, are semantically equivalent. This
equivalence is inherent to the language and hence easy to justify by just looking at the
program — no further analysis is required.

2.3 Memory Operations

In the following, we discuss the memory operations which are used by FIrRM as well as
those presented by Steensgaard [Ste95]. Both describe operations on functional stores
corresponding to constructs usually found in imperative source languages. Table[2.TJon the
facing page shows roughly corresponding operations in the two approaches. Furthermore,
Steensgaard introduces memory operations which do not have a counterpart in common
source or machine languages. They are used to express the dependencies between memory
accesses more precisely. Neither FIRM nor Steensgaard’s approach come with formal
semantics of these operations.
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Steensgaard | FIRM

update store
lookup load
build alloc

free

Table 2.1: Roughly corresponding operations in FIrRM and Steensgaard’s approach

2.3.1 Common Operations: Steensgaard

The update operation is used to alter memory contents. It requires a memory, a location
and a value as parameters, returning a new memory where the given location was updated.

Retrieving values is done by the lookup operation. It takes a memory and a location,
and returns the value at the given location. Such a representation has the advantage
that the order of multiple lookup operations in the same memory is undefined in the
graph and hence reordering them is easily possible. For these two lookup, the order of
execution obviously does not matter:

m a

\ / let v = lookup m a in

lookup b let w = lookup m b in
lookup

build creates new memories. It is given the location for which the memory is to be
created and the initial value and returns a singleton memory. As there is no memory
argument, several build following each other are not ordered in the graph.

a v b w let ml1 = build a v in

\ / \ / let m2 = build b w in

build build

Steensgaard describes no operation to dispose memory locations.

2.3.2 Common Operations: FIRM

The store operation in FIRM behaves exactly like Steensgaard’s update. For load
however, the situation is different. It returns not only a value, but also a memory which
is identical to the one it got as argument and to be used for future operations. The
reason for this is that load operations should not be moved up or down too far in the
graph, namely beyond the next memory-modifying operation:

m a
\/ let m’ = store m b w in
load lf /W let v = load m a in
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The program on the right is a correct linearisation of the graph. The two operations
could be swapped without changing semantics, which is clear as the graph inflicts no order
on them. However, a naive translation of the given linearisation to real machine code
will perform main memory accesses for store and load, ignoring the memory argument.
This translation is incorrect. The load must return the value at location a in memory m,
however, after the translation it loads from m’ instead as m is no longer available. Real
machines have only one memory to work on. Hence FIRM serialises 1oad operations.

Allocating memory is done using alloc. It takes a memory as an argument and
returns both a location, and a new memory — the old one extended by the new location.
This can be used to introduce a strict ordering of allocation operations. However, it is
also possible to pass an empty memory, thereby relaxing the order of subsequent alloc
operations similar to how build behaves.

Furthermore, FIRM provides an operation free to remove a location from a memory.
It is very similar to store. Instead of taking a value as an argument, it marks the given
location as unallocated and returns the altered memory.

2.3.3 Operations to Reduce Dependencies

Steensgaard [Ste95] presents two more operations which manipulate a functional memory.
These operations are used solely to structure the dependencies of memory operations.

A memory can be restricted to a part of its domain, and two disjoint memories (which
do not both assign a value to the same location) can be merged. Using these operations,
the strong linearisation of memory operations can be broken up and later, if necessary,
merged again. This results in a structure as presented on the left in Figure Since the
two update are not ordered by the graph, it is easy to justify that they can be reordered.
Two restrict operations are needed since only disjoint memories can be used with a
merge. It is unclear which memory should have precedence if both overlap.

A similar structure can be expressed in FIRM as described by Mallon [MalO8,
Sect. 4.1.4]: The total order on memory operations is broken up by independent operations
using the same memory object, followed by a sync, which produces a memory used as

N N

restrict restrict store store
N
udete udete sync
\merge/ 1jad
1ojkup

Figure 2.1: Two approaches to represent absence of memory dependencies
Left: Steensgaard’s restrict, Right: sync in FIRM as described by Mallon
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input for the next operation. The purpose of sync is to enforce subsequent operations
to be executed after its arguments. This is shown in the second graph, where the load
must be executed after both store happened.

2.4 Reasoning about memories

To obtain suited semantics for memory operations, we need a formal description of how
to subdivide a memory in two parts. This requires reasoning about the domain of the
memory, and specifying how the locations in this domain are separated to obtain two
disjoint memories.

2.4.1 Separation Logic

Separation Logic [Rey02] has the purpose of making assertions about memories (to be
used, e.g., as an extension of Hoare logic [Hoa69]). The central idea is the separating
conjunction ¢ * 1 stating that ¢ and 1 apply to disjoint parts of the memory.

At first glance, it may seem that separation-logical formulae could serve as description
of memory domains. A separating conjunction partitions the memory, fitting well to the
concept of splitting it in two parts.

However, the separating conjunction abstracts away from how the memory is separated.
There could be several ways to subdivide a memory in order to show that a separating
conjunction holds. This is an important and often useful feature of separation logic,
however, as a result semantics of an operation using the separating conjunction to split a
memory would not be deterministic.

To avoid non-determinism, we need to be able to compute the domain of the split-off
memory and describe it as separation-logical formula. If, for example, we want to split a
and b into a new memory, we need a formula describing a memory with only a and b in
its domain. Depending on whether they are equal or not, the memory contains one or
two elements. This could be described by (a+ — b+ —)V (a+ — Ab+ —). Here,
a — — denotes a memory which contains exactly a, i.e., it describes a singleton memory.
The left part describes the case that a and b are not equal; a memory satisfying this
formula will always have exactly two elements. The right-hand side describes the case of
both being equal: A single memory is both a singleton memory containing only a, and a
singleton memory for b.

As one sees, this approach does not scale well. We have to enumerate all cases of
aliasing and non-aliasing of variables we have no information about, while the information
we want to convey is that the memory contains exactly a and b and nothing else.

We believe the reason for this problem is a fundamental difference in the overall
structure of separation logic and alias information. Separation logic is tailored for a
top-down view on the memory. It describes how the memory is organized, separating it
into smaller and smaller pieces:
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¢ * ¢ * (Y1 * a):

B

Alias information has a very different structure. It is necessarily incomplete [Ram94]
and local. We might know that a and b are different, and so are ¢ and d. We have no
idea how a and c or any of the other pairs relate:

Enumerating all these small local disjoint memories embeds the alias information
into separation logic. However, using separation logic to represent alias information adds
significant overhead.

2.4.2 Capabilities

The calculus of capabilities [WCMO0] is a type system where memory operations require
capabilities to be performed. By using affine environments |Gir87] (each value must be
used at most once), aliasing is restricted. Well-formed programs under this calculus can
never perform invalid memory operations, like accessing freed or unallocated memory or
freeing a memory twice.

However, this approach is not suited for memory-unsafe languages. The goal of the
calculus of capabilities is to provide guarantees about program behaviour. A compiler for
a language like C cannot come up with such guarantees. The compiler must be able to
compile C programs which can go wrong, and preserve their semantics for all the cases
in which they do not.

Based on the idea of capabilities, Charguéraud and Pottier |[CP08| developed an
imperative language with implicit memory which can be transformed to a purely functional
language using an explicit memory representation. The design goal here was to make
reasoning about imperative programs easier by controlling ownership of memory regions
using types. The capabilities, which are just part of the type system without any
semantics in the imperative language, are translated to maps representing memories. The
capability types also provide a separating conjunction. Operations on capabilities include
focusing and unfocusing a variable from and back into a group, which is equivalent to
splitting and merging a single variable from/into a memory.

The issues of the calculus of capabilities concerning unsafe languages apply here as
well. In addition, a run-time system with a garbage collector is assumed, which makes
the language unfit for a C compiler.

10



Chapter 3

IL/M Syntax and Semantics

We based our work on IL/F [Sch13], a simple first-order functional language. Only tail
calls are possible, i.e., the return value of the called function is also the return value of
the caller. That makes the language easier to translate to machine code. IL/M extends
IL/F with basic memory operations as described by the syntax in Figure below.
Here, f, x, a and m range over variables. By convention, f denotes a function, z
a value, a describes a location and m a memory. Furthermore, T ranges over lists of
variables, A over finite sets of variables, and e over expressions. Note that we do not
specify the structure of expressions — that simplifies the formalisation and keeps it general
enough to support arbitrary operators. However, we assume expressions to operate on
variables only (no memory access or function application) and to have no side-effects.
The focus of this language is on memory operations, and being able to express how
they depend on each other. We need further information to justify the independence of

s,t :=={G}letz =eins variable binding
| {G} if v then s elset conditional
| {G} x function return
| {G} fun fTm =sint function definition
[{G} fzm function application
| {G} let m = storemaxins memory store
| {G} let z = load mains memory load
| {G} 1let m,a = alloc ins memory allocation
| {G} let m = freemains memory deallocation
| {G} let m,m = split m A in s splitting memory
| {G} let m = merge m m in s merging memories

Figure 3.1: Syntax of IL/M

11
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memory operations. This information is encoded as annotation for each statement: G
ranges over the possible annotations, which we will detail later. Given a statement s,
we write G5 to denote the information annotated at s. We will omit the annotation if it
does not matter.

In the remainder of this chapter, we discuss the memory operations of IL/M and we
present their formal semantics. We also explain why these semantics are suited to model
the behaviour of C when it comes to memory access.

3.1 Memory Operations

The design goal of IL/M is to express independence of memory operations in the program
itself. We consider operations independent if the program graph imposes no order on
them. Using multiple memory variables, the order becomes partial, so that we have a
wide choice of linearisations which are semantically equivalent.

This would not be possible using implicit memory: To ensure that program behaviour
is completely preserved, memory operations must be entirely linearised in the graph. A
relaxation of this order cannot be expressed in the language.

The formal treatment in this thesis works on the textual representation of the program.
Such representations are much easier to define inductively than graphs, which makes
them better suited for a formalisation in Coq. Inductive program definitions also lend
themselves very well to inductive definitions of semantics and (as discussed in Chapter |4))
well-typedness of programs using inference rules. Nevertheless, it is often helpful to keep
the program’s corresponding graph in mind, so we will usually give both representations
in the following, sometimes using a simplified graph to keep the focus on the important
dependencies.

Our memory operations are taken both from FIrRM [BBZ11] and the work by Steens-
gaard [Ste95], as shown in Table See Section for a detailed discussion of these
operations.

The alloc of IL/M behaves like its FIRM counterpart with an empty memory as
argument. It will choose a fresh location and return this location plus a singleton memory
containing an uninitialised cell at the given location. This models the behaviour of
malloc in C which does not initialise the memory area it provides.

IL/M operation taken from (original name)
store FIRM (store)
load Steensgaard (lookup)
alloc similar to FIRM (alloc)
free FirM (alloc)
split similar to Steensgaard (restrict)
merge Steensgaard (merge)

Table 3.1: Sources for memory operations in 1L/M

12
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m
}
split

7

store store

N

merge

|

load

Figure 3.2: Our approach to represent absence of memory dependencies

Instead of the restrict operation described by Steensgaard, we use an operation
called split. It essentially performs two restrict operations at once. split takes a
set of variables as argument. Two new memories are returned, one containing the given
subset of the locations of the original memory, the other one containing the remaining
locations. We did not use existing frameworks like separation logic [Rey02] or capabilities
[WCMOO] here for the reasons described in Section split is visualised in Figure
(compare this to Figure on page . For reasons we will discuss in Chapter [4} this
approach is more suited for our needs than restrict or sync.

3.1.1 Realisability

The use of functional stores induces a new problem: This language is further away
from how an actual machine works. It can describe programs which cannot be directly
compiled to real machine code. Consider the following example.

m a v
\ T/ let m’ = store m a v in

W store a let m’’ = storem a w in

a
\/ T/ let x = load m’ a in

store load

The first store creates a new memory m’. It differs from the memory referenced by
m only in the value at the location denoted by a, which in m’ is changed to v. The second
store creates another new memory object m’’, independent of m’, where a is mapped
to the value of w. The final load is performed on m’, hence it will always return v.

However, a naive translation of this program, which compiles each memory operation
to direct memory access, is incorrect. Both store operations would be performed on the
machine memory, therefore the final 1load would return w. The fact that load explicitly
referenced m’ as memory to load from is lost during translation, since only one memory
is available on an actual machine. The simulation behaves as if the final load was
performed on m’’.

13
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We say that a linearised program permitting such a naive translation is realisable. This
notion is formalised later in Section [3.3] The example program above is not realisable.

The issue of realisability has already been touched when we discussed the reason for
load in FIRM to return a memory (see Section . The example we used there is a
graph which has both realisable and non-realisable linearisations. FIRM tries to avoid
such graphs so that every linearisation can be chosen to emit machine code.

3.2 Formal Semantics

To formally reason about program behaviour, we define small-step semantics for IL/M as
shown in Figure |3.3| on page There are a few definitions and notations we need to
formulate the inference rules. These are presented below.

Definition 1 (Environment). An environment I' for a given set V is a function
variables — { L} U V. The empty environment () maps every variable to L. The domain
dom I of an environment is the set of variables not mapped to L. An environment I'q
is a sub-environment of I'y, in symbols I'1 C I'g, if both assign the same value to each
variable in domT'; (but 'y may have a larger domain).

The notation I'? describes the environment obtained by updating I' to return v for
variable a:
v ifr=a

(FZ)wZ{

Lookup and update can also be performed using lists T of variables (for update, two lists
of equal length are required).

I'z otherwise

Definition 2 (Memory). A memory u is a function values — { L, 0} U values mapping
locations to memory cells. Here, L denotes a cell which is unallocated, while [J represents
an uninitialised cell: an allocated cell no value has been written to yet. The empty
memory @ maps each location to L.

The domain of a memory and the notation to update it are defined similarly to
environments. Note that uninitialised cells are contained in the domain.

Definition 3 (Closure and closure context). A closure ¢ = (E, s, T, m) contains the value
environment FE it closes over, the statement s to execute, the list T of formal variable
parameters and the name m of the formal memory parameter. We will use the notation
c.E to refer to the value environment of a given closure ¢, and similar for the other
components.

A closure context L is a list of named closures. ) denotes the empty context, and LZ
describes the context obtained by adding closure ¢ with name f to context L. Using a
name twice is not allowed, so this is only valid if no closure called f is already contained
in the list. To look up a name, we use the notation L f denoting the (unique) closure
with name f. If no such closure exists, we have L f = 1.

The domain dom L of a closure context is the set of names added to it. The notation
L| 7. describes the context obtained by dropping everything declared after f (excluding
f itself) from L.

14



3. IL/M Syntax and Semantics

We do not use environments of closures for the bookkeeping to avoid having a function
environment in the closures. We can use L| 7. to obtain the context f was declared in.
This keeps the formal description closer to our Coq formalisation, which is described in
Section

Definition 4 (State). A state R = (E,L,S,U | s) consists of an environment FE for
values, a closure context L, an environment S for memories, the set U of locations which
have been allocated so far, and the statement s which is to be executed. Again, R.F etc.
refers to the components of a given state R.

We will often have a fixed program s and want to talk about arbitrary states for that
program. Then we use Q = (E,L,S,U) to denote the values, memories, closures and
used addresses, and (@ | s) describes the entire state. Q.L etc. can be used to refer to
the components of Q.

Similar to expressions, we do not define the structure of values. Furthermore, we
do not formally differentiate between values and locations — any value can be used as a
location. However, the type system will later impose some restrictions. We still speak
of locations to make explicit the intention that this value is used to address a cell in a
memory.

Semantics are given as transition relation between states. The judgement Ry — Rs
denotes that a single step takes the first state to the second one. As usual —* is the
reflexive transitive closure of —, i.e., R —* Ro means the second state can be reached
from the first by any number of steps (including zero). We designed the semantics so
that it is deterministic, i.e., given two successors R’ and R” of the same state (R — R’
and R — R"), we have R’ = R".

The inference rules are presented in Figure [3.3] on the following page. They show
some specifics of our approach which we discuss in the following. Note that we omitted
the annotation {G} for each statement since it does not influence the semantics.

ExP uses the judgement F F e || v for expression evaluation: Expression e evaluates
in value environment F to value v. We further assume for IF that we are provided with a
function val2bool : values — {0,1} to use any value in a conditional. The precise details
of evaluation and converting to boolean can easily be filled in when our approach is used
for a concrete implementation.

FuN and APP create and use closures. Application of a function is performed in
the closure context L| f. obtained by dropping everything declared after f, which is the
context at the time when f was declared, plus f itself. Note that the closure does not
contain any memory, it only closes over the value environment E. We want the simulation
of IL/M on an actual machine to be straight-forward. However, putting memory into the
closure would require the simulation to restore this memory on application of the function.
Instead, the memory must be passed as an argument, which is easy to implement on a
real machine — memory is simply left unchanged when jumping to the callee.

We do not even allow for passing several memories to a function: Everything must
be merged back to one memory. The rationale behind this is that moving statements
across function application is non-trivial anyway. This transformation changes the graph
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16

Erelw
E.L,S,U|letz=eins — EY L,S,U|s

Exp

val2bool(E x) =i
E,L,S,U|if xthens;elsesy — FE,L S,U|s;

c=(E,s,x,m)
E,L,S,U |fun fTm=sint — E,L{ S U]|t

Lf=(F, sz,m) L =L
E.LSU|fgm — E§o, L 08, U]s

(Sm)(Ba)#L  p=(Sm)Ee

STORE -
E,L,S,U|letm' =storemaxrins — FE,L S ,U|s
L (Sm)(Fa)=v L#v#0
0A
""E.L,5.U|leta = loadmains — B L,S,U s
v =allocateU  p =04
ALLoc

E,L,S,U|let m,a=allocins — E, LS} UU{v}|s

(Sm)(Ea)# L p=(Sm)f°

FREE 7
E,L,S,U|letm' =freemains — FE,L,S],U]|s

W= m)pa K= (SM)|4omsmn\Ea

SPLIT

E,L,S,U|letm/,m" =splitm Ains — E, L, Z?/Z%,,UH

dom(Sm)Ndom(Sm')=0 pu=SmusSm

MERGE "
E,L,S,U|let m" =mergemm'ins — E,L,S; ,U|s

Figure 3.3: Small-step semantics of IL/M
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Figure 3.4: Big-step semantics of IL/M
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corresponding to the program, hence it requires further reasoning about correctness.
Allowing arbitrary memories to be passed around would severely complicate handling
function application in the type system presented later. Hence we decided to enforce
merging all memories before applying a function and concentrate on supporting program
transformations which do not change the program graph.

STORE and LOAD require the location they operate on to be allocated and initialised,
respectively. If this is not the case, the program gets stuck. This models undefined
behaviour of the C source program — see also the discussion in Section [3.2.1]

FREE is very similar to STORE, the only difference is that, instead of writing a value
to the memory location, it writes L to mark that location as unallocated. The location
is however not removed from U — there can still be pointers to this location, so we do
not want alloc to allocate a new memory at that location. As we will discuss later, that
would significantly complicate handling memory in the type system.

ALLOC uses a function allocate to determine the address of a fresh memory cell. We
require that function to depend on U alone and to return a value which is not contained
in U, but we do not rely on the actual behaviour of the allocator. If we allowed using
any v ¢ U in ALLOC, semantics would not be deterministic.

SpPLIT and MERGE constitute no surprises. Note that MERGE forces the memories to
be disjoint. They use the following operations on memory objects:

Definition 5 (Restriction of a memory). The restriction of a memory u to a set of
values A, in symbols p| 4, is defined as

(ul) z = pr ifreA
4 1 otherwise

Definition 6 (Union of memories). The union puj U pe of two memories py and pg is

defined as

if poxr =L

H1x
(1 Up) x = .
p2 x  otherwise

Note that this operation is only commutative if the domains of p; and us are disjoint.

Defining big-step semantics based on these inference rules is straight-forward, see
Figure on the preceding page. The judgement (@ | s) | v says that program s
terminates when starting it in the given environments and returns v. Obviously, this is
equivalent to (Q | s) =* (Q' | z) with Q".F z = v.

3.2.1 Relation to the C Standard

The goal of our work is to create a memory model powerful enough to simulate the
C memory semantics. Therefore, design decisions are driven by the requirements of the
C specification — in the remainder of this section, we refer to the C11 ISO standard
[C11]. We must ensure that IL/M programs can only get stuck if their behaviour in C is
undefined. Otherwise, translating from C to IL/M would not be semantically correct.
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When a memory location is unallocated, both load and store operations on that cell
get stuck. The C standard allows this, since a pointer to such a cell can actually never
be dereferenced: It could be obtained using pointer arithmetic, but that is only allowed
within an array object (Section 6.5.6) and only if the result is actually still contained
in the array, or at the address right after it — but in the latter case, dereferencing that
pointer is not allowed. After calling the function free, pointers to unallocated objects
may still be available, but they may not be dereferenced either (Section 6.5.3.3).

In addition, load gets stuck when accessing an uninitialised memory location. The
value of an object at such a location is indeterminate (Section 7.22.3.4), which means that
it can be a trap representation (Section 3.19.2). Reading such a trap representation results
in undefined behaviour unless a character pointer is used (Section 6.2.6.1). Therefore
we disallow reading it. A full C implementation would have to allow reading it using a
character pointer, which however would require an explicit notion of an indeterminate
value in the program semantics, which we tried to avoid to keep semantics simple and
deterministic.

In our semantics, alloc will never return the same pointer twice. Every location
returned by alloc is added to U, and it is never removed again, not even by free. The C
standard actually does not even allow a program to observe whether the implementations
of malloc and free re-use memory locations. After calling free, the values of pointers
to the freed object become indeterminate (Section 6.2.4) and cannot be compared to
pointers returned by future calls to malloc. Therefore, the application has no way to
even find out whether malloc re-uses a pointer or not. IL/M currently does not make
use of this freedom, pointers can be compared even after the location they reference has
been freed. They cannot be dereferenced any more, however.

3.3 Realisability and Program Normalisation

In order to give a formal definition of realisability, we introduce the notion of program
normalisation. Normalisation is a transformation which changes the program to use
only one memory variable m. All split and merge operations are removed, the memory
argument of all load, store and free operations is ignored and replaced by m. Each
alloc is immediately followed by a merge to merge the new singleton memory into m.

This is defined formally in Figure [3.5| on the facing page: norm,, s is the normalised
form of s using m as name for the global memory. m is the name of a temporary memory
used for allocation; it must be different from m. For example, when using natural numbers
as representation of variable names, we can set m :=m + 1.

Based on the definitions of this chapter, we can now make a first attempt to formalise
the notion of realisability introduced in Section [3.1.T

Definition 7 (Realisability, preliminary). A program s is realisable if the following holds
for some m:

VQ,v: (Q]sdv) = (Q| normp s | v)
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normm, ({G} let x = e in s) ={G} let x = ein normy, s
norm,({G} if « then s else t) = {G} if x then norm,, s else norm,, t
normy, ({G} x) ={G}z
norm,,({G} fun f Tm’ = s int) ={G} fun f Tm = norm,, s in normy, t
norm,, ({G} fxm’) ={G}fzm
norm,,({G} let m"” = store m’ a z in s) ={G} let m = store ma x in norm, s
norm,,({G} let x = load m' a in s) = {G} let z = load ma in norm,, s
normy,,({G} let m’,a = alloc in s) ={G} let m,a = alloc in

{Gs} let m = merge i m in normy, s
norm,,({G} let m" = free m’ a in s) ={G} let m = free ma in normy, s
norm,({G} Let m"”,m" = split m’ Ains) = norm,, s
norm,({G} let m"” = merge m’ m” in s) = NoTMp, S

Figure 3.5: Program normalisation

In other words: If the program terminates with result v in the initial environments @),
the normalised program using global memory m must behave the same. That program in
turn can easily be simulated on an actual machine, using the real memory to simulate m.

This definition does not take well-typedness and consistency of states into account,
which is why we will change it later (see Section . However, it already gives the idea.

Looking at the initial example for non-realisability from Section one can easily
see that normalisation changes semantics. The left-hand side shows the original program,
the right-hand side is normalised for m:

let m’ = storem a v in let m = storem a v in
store m a w in
load m a in

let m’’ = store m a w in let m
let x = load m’ a in let x

The left-hand program will always bind x to the value of v. The right-hand side behaves
as if the load was performed on m’’ since the normalisation forgets which variable was
used, so x will be bound to the value of w. This is exactly what would happen if the
left-hand side would be naively translated to machine code.

Concerning computability, we conjecture that realisability of a program is undecidable.

Conjecture 1. Realisability of a program s is not decidable.

Proof sketch. Realisability can be reduced to the halting problem. Assume there is a
deciding procedure for realisability. Now, given some program s which is structurally equal
to its normalisation, we know that s is realisable. Append the following non-realisable
program fragment (based on above example) to s:
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3. IL/M Syntax and Semantics

let m’ = store m a v in
let m’’ = storem a w in
let x = load m’ a in x

If s does not terminate, then it is still realisable as the left-hand side of the implication in
Definition[7]is always false. If however s terminates, it is not realisable since normalisation
changes semantics: s will return v while norm,, s returns w.

Since the halting problem is undecidable, this reduction implies that realisability is
undecidable as well.
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Chapter 4

Type System for IL/M

In this chapter we describe a type system for IL/M. It is designed in such a way that well-
typed programs are guaranteed to be realisable, i.e., easy to translate to a real machine.
Furthermore, it provides support for introducing split and merge operations into a
program, a process we call de-linearisation, based on pointer equalities and inequalities
annotated at the program. To achieve this, memory variables are equipped with types
describing their domain.

The central property of the type system is: If a program s is well-typed, then its
normalisation norm,, s (as defined in Figure on page is well-typed as well, and
both are semantically equivalent. This relies on the alias annotation being correct.

A compiler workflow using IL/M could work as follows: The source program is
translated to IL/M with entirely linearised memory operations, as the source language
usually does not allow for anything else. Based on the well-typedness of the original
program, the compiler can prove the IL/M program to be well-typed. Using information
obtained, e.g., by an alias analysis, the compiler then de-linearises memory dependencies.
The details of this transformation, i.e., how to find out where split and merge operations
should be inserted, are beyond the scope of this thesis. After proving that the resulting
program is well-typed, above property guarantees that if normalising the transformed
program yields the original one, both are semantically equivalent.

: e :

store / store
I —> store store —

store / store

merge
load T load
load

/

The subsequent optimisation phases are performed on the de-linearised program,
preserving semantics and well-typedness. Finally, the compiler has to linearise the last
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4. Type System for IL/M

program again to translate it to machine code. Since that program is well-typed, the
type system again guarantees that it is semantically equivalent to its normalised form.

During the remainder of this chapter, we first give an idea on how this is achieved,
then we present the formalisation of the type system. Properties of well-typed programs,
like the aforementioned semantic equivalence, are covered in Chapter

4.1 Informal Description

Consider the following simple IL/M program:

m

store {a 22 b} let m’ = storem a v in
{a # b} let m’’ = store m’ b w in

store {a 2 b} let x = load m’’ ¢ in ...

load

Without further information about the values of a and b, there is not much we can do.
Hence we assume some analysis found out that these pointers never take the same value.
We do not use the inequality sign here since a 2 b is not a statement about the variable
names a and b. It rather is a statement about the values of a and b for each execution
of the program.

Now we want to express, in the structure of the program itself, that this makes the
two store operations independent of each other. This is achieved by introducing split
and merge operations:

T
11 {a 2 b} let m1, m2 = split m {a} in
{a Z b} let m1’ = store ml a v in

R
m\
)
g
[
ot

sto store {a 2 b} let m2’ = store m2 b w in
\ / {a Z b} let m’ = merge ml’ m2’ in
mefge {a Z b} let x = load m’ ¢ in ...
load

It is important here that we merged the memory before performing the load: Since we
have no information whatsoever regarding the value of ¢, both store operations could
have an influence on the result of load. Hence we ensure that the load is ordered below
both store in the graph.

The type system keeps track of which variables were split to a separate memory.
These variables are called the focus. The memory which contains the split-off locations
(in this case, this is only the location denoted by a) is called a focus memory. The type
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4. Type System for IL/M

of such a memory is the set of variables which was used to create it, so that the set of
corresponding values describes its domain. Therefore, the focus is always the union of
the types of all focus memories.

All locations which have not been split into a focus memory remain in the panorama
memory. This accounts for the fact that there are always locations a compiler does not
know anything about. Real-world alias information is necessarily incomplete |[Ram94].
Hence the panorama memory collects all these locations. For obvious reasons, there
always has to be exactly one panorama memory, and it has the type T.

The following table shows, for each statement of the example program, the memory
type environment and the focus before the statement. For the sake of readability, we use
an empty table cell instead of | for undeclared variables.

m ml m2 ml’ m2’ m’ | focus

T {} | {a 2 b} let ml, m2 = split m {a} in
{a} T {a} | {a 2 b} let ml’ = store ml a v in
T {a} {a} | {a 2 b} let m2’ = store m2 b w in
{a} T {a} | {a 2 b} let m’ = merge ml’ m2’ in

T {} | {a 2 b} let x = load m’ ¢ in ...

To justify this transformation, we have to prove the new program to be semantically
equivalent to the old one. The type system imposes some requirements to be able to
provide this equivalence: When accessing a location through store or load, we require
the variable to be accessible in the memory used for that operation. Accessibility is
defined depending on the type of the memory: For a focus memory, the variable has to
be equal to one of the variables contained in the memory type. To access the panorama
memory, the variable must have a different value than all variables in the focus. These
proofs of (in)equality must be derived from the alias annotations at the statement in
question. Only if the required relation is statically derivable from the alias information,
memory access is allowed. Based on a correctness proof of the alias analysis we can then
show that the (in)equalities hold for each execution and make use of them in proofs
concerning the semantics of an IL/M program.

In our example, the following arguments justify accessibility:

~

1. The first store uses a to access memory ml which has type {a}. Since a = ais
trivial, accessibility is easily shown.

2. The second store uses b to access the panorama memory while the focus is {a}.
To prove accessibility, we have to show a 2 b, which is given by the annotation.

3. Finally, the load uses c to access the panorama memory while the focus is empty.
Here, there is nothing to show.

As you can see, the rules for accessibility require the inequality a 2 b to be present,
which is exactly the inequality justifying the independence of the two store operations.
In other words, without this inequality, the transformed program would not have been
well-typed.
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In addition, accessibility actually requires us to merge memories before performing
the load: c cannot be used to access m1’ since we cannot prove it to be equal to a. It
cannot be used to access m2’ either since it cannot be proven to be unequal to a. As
explained above, this is important to preserve the semantics of the program. In general,
access to variables with insufficient information is prohibited.

Note that accessibility does not guarantee that the memory access will actually
succeed: It could still be the case that the location is not allocated. However, a location
accessible in a memory can never be found in another memory.

We also have to ensure that the transformed program is still realisable. This is done
by enforcing the domains of all memories, which can be used at a program point, to be
disjoint. As you can see in the table above, m has no type any more after the split:
It is removed from the type environment. This prevents m from being used again later,
which would violate realisability. Similarly, store, free and merge also remove their
input variables from the type environment. Intuitively, memory domains being disjoint
guarantees that the compiler never has to duplicate parts of the memory to simulate
the behaviour of IL/M on a real machine. This explains why restrict and sync as
presented in Section [2.3.3] are not suited for our approach. In both cases, we would have
to allow non-disjoint memories being available at the same time.

Types which make sure variables are used only once are called affine types. If,
furthermore, variables may not be discarded (i.e. they must be used exactly once), the
types are linear [Gir87; Wad93|. That is however not needed in our case. The type system
we present is partially affine: The single exception is 1load, which allows the memory to
be used again afterwards.

4.2 Formalisation

As already mentioned, variable equality and inequality as used by accessibility is based
on the alias information annotated at the statement in question. A proof of accessibility
requires a proof that the required equalities and inequalities can be derived from the
information assumed to be valid at this program point. Provability is defined by a proof
system on alias annotations which is given in Figure on the facing page. The alias
annotations are finite sets of alias tokens k. Such a token has the form a Zbor a=b
where a and b are variables. The judgement G > k says that the validity of token x can
be derived from the set of given tokens G.

A memory type ¢ is either a set A of variables (then ¢ is a focus type) or T, which
denotes the panorama memory. Based on these rules, it is straight-forward to define
accessibility.

Definition 8. A variable a is accessible in a memory of type ¢ under alias information G
and focus F, in short G, F't> a € ¢, if the following holds:

e If = T, then a must not alias with any focus variable: Va' € F': G1>a % d

e Otherwise, ¢ = A is a set of variables and a must alias with some variable in A:
dd/ e A:G>a™=d
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ASSUMPTIONﬁ
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Eq Eq G>as =y

REFL Gbaa SYMM G> a1 ~ as

Eq Gra Zag G a3z = as
TRANS G l> al g a2
N GDCLQ%GJ N GDalgCL?) Gl>a3,,i_a2
EQsymn EQ
o G > a1 Z as " G > a] 2 ag

Figure 4.1: Derivation rules for alias tokens

We will also need the following notion of two sets of variables which will have disjoint
sets of values for every execution:

Definition 9 (Alias-disjointness). Two sets of variables A; and Ay are alias-disjoint
under alias information G, in short G > A; [J A, if the following holds:

Va1€A1,a2€A2:G>a1;§a2

Similar to the state in dynamic semantics, the static context collects the information
about variables which is needed to judge whether a program is well-typed.

Definition 10 (Closure type and closure type context). A closure type x = (I',0, 1)
consists of the type environment I' for the values in the closure, the list of argument
types 8 and the return type 7. The notation y.I' describes the type environment of a
given closure type x, and similar for the other components.

A closure type context A is a list of named closure types. We use the same notations
as we did for closure contexts (see Definition |3/ on page .

Definition 11 (Static context). A static context (I', A, ¥) consist of an environment I" for
the types of normal variables (holding values), a close type context A and an environment 3
for memory types.
The focus Fy, of a memory type environment X is defined as the union of all focus
memory types:
Fy = U S m
medom X, ¥ m#T

The type inference rules for common operations are given in Figure[d.2 on the following
page. The judgement I', A, ¥ F s : 7 says that program s is well-typed with return type 7
in the static context (T', A, X).

Similar to how we dealt with values and expressions, we leave the definition of types
up to the implementation. We assume that for every type 7 there is a type "1 for
pointers to values of type 7. Furthermore, we assume a judgement I' - e : 7 saying that
expression e has type 7 in environment I', and a judgement - v : 7 stating that value v is
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Figure 4.2: Inference rules for well-typedness of IL/M programs: Common operations

of type 7. We define isPtr to be a predicate describing whether a given type is a pointer:
isPtr(t) & 37" : 7 =*7.

As you can see, the inference rules require the alias information to be monotone: The
set of alias tokens can only grow, no token may be removed. The only exception is the
body of a function, which is also the only place where variables can leave scope.

T-ExP does not allow a variable to be overwritten. The name must not have been in
use before. This is not actually a restriction (variables can simply be renamed), and it
avoids problems with variables changing their value while they are used to describe the
domain of a memory. Furthermore, T-EXP requires the type 7/ of the expression not to
be a pointer type. This forbids pointer arithmetic. It also prevents simple assignment of
pointers, which however can be easily avoided by always referring to the original variable.

Since functions can only get a single memory argument, T-FUN requires the function
body to type-check in a memory type environment with just a panorama memory.
Moreover, functions may not be overwritten as this is not allowed in closure (type)
contexts. An arbitrary sub-environment I of the currently existing variables I can be
carried over to the closure.

T-APP requires the focus to be empty before calling a function. This does not entirely
forbid focus memories to exist, since memories of type () can be obtained by splitting
the empty set off a memory. However, it ensures that all existing memory locations are
passed on to the function.

Figure 4.3| on the next page presents the inference rules for memory operations. We
forbid overwriting memory variables to avoid ‘loosing’ locations or the panorama memory.
However, memory variables are removed anyway after they were used and modified, to
make memory types affine. Hence let m = store m a x is allowed. This is reflected by
the typing rules requiring the memory variable to be untyped (i.e. have type L) after
removing the soon-to-be-gone argument memory variables from the environment.
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Figure 4.3: Inference rules for well-typedness of IL/M programs: Memory operations
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T-STORE, T-FREE and T-LOAD require the location to be accessible in the memory,
as discussed above. Furthermore, the pointer used to access the location must of course
have a pointer type, and the stored/loaded value has the corresponding type. Again,
T-FREE is very similar to T-STORE.

T-ALLOC creates a new focus memory. To maintain the consistency relation presented
in Section 5.1}, we also require some alias information about the new location to be present:
After the allocation, the alias tokens must express the fact that the new location is different
from every location which previously was in the focus. This is trivial, since allocate
returns fresh locations, so it should be easy to establish that fact. Furthermore, during
the initial translation to IL/M, the focus will usually be empty since split is not used
and each alloc is immediately followed by a merge, so there will only be the panorama
memory. In this case there is nothing to prove.

There are two variants of T-SPLIT: One to work on the panorama memory, and
one for focus memories. Splitting a focus memory requires a set of variables which is
alias-disjoint from the remaining variables. Without that requirement, splitting {a} from
{a, b} could also move b to the new memory, so we would not know how to type the
remainder memory. When using split on the panorama memory, there is a similar
requirement: The split-off variables must be alias-disjoint from the current focus. This
is equivalent to requiring all variables to be accessible in the panorama memory. It
guarantees that we do not add variables to the new focus memory which are actually
already contained in another focus memory.

T-MERGE also has two variants. The rules ensure that one does not merge a memory
with itself. Note that only the second argument may be a panorama memory. Since there
can only be one such memory, and merge is commutative, this is not a restriction.

Also, T-MERGE and T-SPLIT (in both variants) do not allow the alias information to
change at all. There is no point in allowing information to be added here, and forbidding
it is required for normalisation to preserve the annotation (see Lemma 4] on page .

An interesting question related to the type system is: Is well-typedness of a program
in a given static context (I', A, X) decidable? We conjecture that this is the case.

Conjecture 2. Given a static context (I'y A, X), well-typedness of programs is decidable.

Proof sketch. The structure of the program and the current ¥ leave no choice about which
inference rule to apply next, so this boils down to a deciding procedure for deriving alias
tokens. We require the sets G of alias tokens to be finite, and we only deal with a finite
set of variables, so it is possible to enumerate all equivalence classes of variables, where a
and b are equivalent if G > a = b. The fact that this is an equivalence relation follows
from EQger., EQsym and EQrrans (see Figure on page . As aresult, G>a=b
can be decided by checking whether a and b are in the same equivalence class. The rules
NEQgym and NEQg, establish that G > a 2 b can be viewed as a symmetric relation
between these equivalence classes. For each inequality token in GG, mark the equivalence
classes as inequal to each other. Now G > a 22 b can be decided by checking whether the
equivalence classes of a and b are marked as unequal. Hence derivability of alias tokens
is decidable. As a result, accessibility and well-typedness are decidable as well.

28



Chapter 5

Properties of Well-Typed
Programs

Our type system establishes some guarantees on executions of well-typed programs. Based
on a consistency relation between states and static contexts, type safety is separated
into progress lemmas, proving that a state consistent with a context makes a step, and
preservation lemmas, proving that if such a state makes a step, the next state is also
consistent with a (possibly different) context [Pie02, Sect. 8.3]. Since programs in IL/M
can get stuck to model undefined behaviour of the underlying C program, we cannot
establish progress lemmas for all statements. However, IL/M ensures type preservation.

Furthermore, the type system provides a semantic guarantee: Well-typed programs
are semantically equivalent to their normalisation (as defined in Figure on page .
This implies that well-typed programs are realisable, i.e., translating them to real machine
code is straight forward (see Definition (7| on page .

5.1 Type Consistency and Preservation

Before discussing type preservation, we have to define which properties are to be preserved
through executions of well-typed programs. Our consistency relation requires the values of
variables in F to have the type described by I', and similar for functions. Memories must
adhere to the domain specification given by their type. To have any typing guarantees
about values obtained via load, we need an oracle o (mapping locations to {L} U types)
telling us for each allocated memory location which type the content of that cell has.
Then we can require memory cells to have values of that type, and pointers to point to
cells with an appropriate type. This guarantees pointers point to values matching their
type. A similar idea is used in proofs of type safety for ML, where the oracle is called
store typing [Pie02, Sect. 13.4].

Since we can never have pointers with different types to the same location, such a
static model of types of memory cells is sufficient. If we would allow pointer arithmetic or
re-using the memory space released by free in a future alloc, we would need to include
types in our run-time model of memory, similar to what CompCert does [LBO0S|.
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5. Properties of Well-Typed Programs

To formalise consistency between states and contexts, we need some preliminary
definitions:

Definition 12 (Typing of value environments). A value environment E is typed according
to a value type environment I, in short - F : T, if all values have the type given by I':

Va edomI':FFa:Ta

Definition 13 (Typing of closure contexts). A closure context L is typed according
to a closure type context A, in short - L : A, if for all closure names f € dom A the
closure ¢ = L f matches the closure type x = A f. The value environment c.F must be
typed according to the type environment x.I' in the closure type, and the statement c.s
has to be well-typed:

FeE:x.I A X'F:%’ Al 05" Fes:xT
Now we have all the formalism available to define the consistency of a state:

Definition 14 (Consistency of a state). A state (E,L,S,U | s) is consistent with the
static context (I, A, ¥) with return type 7 using oracle o if the following conditions hold.
Consistency is denoted by the judgement (E, L, S,U | s) : 7 F, I', A, X.

1. The memory type environment > is valid

(a) Va € Fy, : isPtr(T" a) (the focus consists of pointers only)
(b) 3mT : X mT =T (there is exactly one panorama memory)
(c) Ym,m' € 2\ {m'}:m#m' = Gy>Xm O Xm (the types of different focus

memories are alias-disjoint)
['A, ¥ F s: 7 (the current statement is well-typed with type 7)
F E : T (the value environment is typed according to the static context)

F L : A (the label environment is typed according to the static context)

otk W

Memories are well-typed

(a) Vm € dom ¥ : Sm C U (all memory domains are subsets of U)
(b) dom(Sm")N E Fg = () (the panorama memory contains no focus location)

(c) Vm € X\ {m"}:dom(Sm) C E (¥ m) (the focus memories contain no more
than the addresses denoted in their type)

6. The oracle fits to the state: Let p be the memory obtained by merging all available
memories, i.e., it = || ,edoms S M (as we will see later, all these memories are
disjoint, so the order in which they are merged does not matter)

(a) domo C U (the oracle only predicts types for allocated addresses)

(b) Yo € domo : L # pv# 0= F pov:ov (the prediction of the oracle is correct
for cells containing a value)
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5. Properties of Well-Typed Programs

(¢) Va € domT',7" : T'a = *7' = o(F a) = 7' (pointers in E point to cells with
the right type)

(d) For all f € domA, let x =A f and ¢ = L f; for all in a € dom x.I", we must
have x.I'a = *7" = o(c.E a) = 7 (pointers in the value environments of the
closures point to cells with the right type)

(e) Vv € domo, 7 : v ="*7" = o(uv) = 7 (pointers in memory point to cells
with the right type)

Note that the first condition involves only the static context. It excludes invalid
contexts which otherwise allow well-typed programs, like memory environments 3 having
several panorama memories, or memory types referring to non-existent variables.

The domain specifications of memory types can be conservative approximations of
the reality. By condition 5¢, the domain of a focus memory does not have to exactly
match the variables in its type, it only has to be a subset thereof. As a result, there is no
guarantee about the value of such a variable being contained in the memory. However,
condition 5b ensures the value is not contained in the panorama memory.

To take any use of the annotated information, we need the alias tokens G to actually
conform with the current values of variables. This is not a property well-typedness can
maintain, hence it is not part of type consistency. We assume we are given correct alias
information.

Definition 15 (Satisfying alias tokens, Alias-correctness). A value environment E
satisfies an alias token k, in symbols E F &, if the following holds

e Ifk=a2=b,then Fa=FEb
e lfk=a%2b,then Fa#FEb

A value environment E satisfies a set G of alias tokens (E F G) if E satisfies all
tokens k € G.

An annotated program s which has type 7 under the static context (I',A,Y) is
alias-correct if all the states it reaches in a consistent execution have value environments
satisfying the current annotation:

Vo,Q,R: T)A,XF, (Q]s):7
=Q|s—=>"R
= R.EEGpg,

An important property of the typing rules is that this consistency relation is maintained
when a well-typed program performs a step from a state which satisfies the annotation:

Theorem 1 (Type preservation). Let Ry be a state such that Ry : 7 Eg T'1, A1, X1 and
Ri.EE GR,s. Let Ry be such that Ry — Ra. Then there exist Iy, Aa, X9, o2 such that
RQ . T '202 FQ,AQ, 22.
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5. Properties of Well-Typed Programs

The proof of this theorem by case distinction over the performed step — as actually
conducted with the Coq theorem prover — is rather lengthy and cumbersome, so we
present only the general ideas and the cases where preservation is not entirely obvious.
Preserving consistency was the motivation for some of the requirements of the type
inference rules which were already mentioned above.

If the value of a variable could change, conditions 5b and 5¢ (concerning the domains
of memories) could be violated afterwards: The memories did not change, but the result
of looking up the focus or the memory type, respectively. If the panorama memory could
leave scope, condition 1b would be violated.

If functions were allowed arbitrary memory arguments, T-APP would have to handle
substitution in memory types to ensure that the domains of focus memories are still
properly described by their types. Condition 6d is required to establish condition 6¢
again after performing a function application.

T-SPLIT requires the split-off set to be alias-disjoint from the remainder or the focus,
respectively, to ensure that the focus memory types remain alias-disjoint (condition 1c).
Both T-SpLIT and T-MERGE choose the type of the resulting memory in a way that the
domain restrictions (condition 5) are maintained.

alloc, free and store are the only operations affecting the merged memory u, so
maintaining condition 6 is trivial for all the others. Since T-STORE checks the type of
the pointer used to access the memory, condition 6e guarantees that the oracle is still
valid after updating the memory. free just marks a cell as unallocated, so condition 6b
is maintained without changing the oracle.

For alloc, the oracle is updated at allocate U which (according to our assumptions
about the allocate function) is not contained in U. Condition 6a guarantees that the
oracle does not predict a type for this location, which in turn means that by conditions
6c—e, no pointer is pointing there. Condition 5a ensures that the new location, which
T-ALLOC adds to the focus, is not already contained in the panorama memory, which
would violate condition 5b. To guarantee that condition lc (alias-disjointness of focus
memory types) holds after an alloc, we require the inequalities between the new variable
and the focus to be represented in the alias information of the following command.

load needs the oracle conditions 6b and 6¢ to maintain condition 3 (E is typed
according to I'). Furthermore, in case a pointer was loaded, condition 6e is required to
re-establish condition 6c.

Theorem [1| can trivially be extended to —*. It also follows that if a program of type
T starting in a consistent state terminates with value v, then we have v : 7.

5.1.1 Properties of Type-Consistent States

Conditions 1 and 5 of type consistency give raise to some interesting properties which
have already been mentioned in the introduction to the type system (Section .

An important fact is that if an alias token k can be derived from an annotation G,
and an environment F satisfies GG, then E also satisfies k. As a result, the sets of
values obtained by looking up alias-disjoint sets of variables are disjoint if the lookup is
performed in a satisfying environment.
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5. Properties of Well-Typed Programs

Lemma 1 (Soundness of alias token derivation). Let E F G and G> k. Then E F k.
Furthermore, let Gi> A1 0 Ay. Then EA1NE Ay = 0.

Now we can prove two important properties of type-consistent states: Two different
memories are disjoint (Lemma , and a variable being accessible in a memory guarantees
that it cannot be found in another memory (Lemma [3]).

Lemma 2 (Different well-typed memories are disjoint). Assume a state consistent with a
static context using oracle o, i.e., we have (E,L,S,U | s):7FE, I,A,3. Let EF G4 and
mi,mg € dom X with my # mg. Then dom(S mq) Ndom(S mg) =0, i.e., the memories
denoted by these variables are disjoint.

Proof. Since there is only one panorama memory, there are two cases to distinguish:

e One of the memories is the panorama memory. Assume without loss of generality
that X my = T and X my = As. According to conditions 5b and 5c of state
consistency, we have dom(S mi) N E Fy, = 0 and dom(S mg) C E Ay. Using
the definition of Fy (Definition on page , we can derive that Ay C Fy
and hence £ Ay C E Fy. Thus we have dom(S my) C E Fy and therefore
dom(S mq) Ndom(S mg) = 0.

e Otherwise, both memories are focus memories. Let X mq = A; and X mo = As.
Using condition 5¢ we obtain dom(S mi) € E A; and similar for mg and As.
From condition 1c we can derive G4 > A1 [ As. Since E satisfies GG, we have
E A1 N E Ay = () and hence dom(S mq) Ndom(S mz) = 0. O

Lemma 3 (Soundness of accessibility). Let (E,L,S,U |s):7E,; ',A,¥ and let E F Gj.
Let m,m’ € domX with m # m/. Assume Gs, Fx, >a € ¥ m. Then E a ¢ dom(S m/).

Proof. The proof is done by case distinction over the type of m.

e Assume X m = T. Then accessibility in m means Va' € Fy, : Gy > a 2% d.
Furthermore, m’ is a focus memory and we have ¥ m’ = A’. Using condition 5c of
the state consistency, we obtain dom(S m') C E' A’. Assume for contradiction that
E a € dom(X m’). Then we obtain Ea € E A" and hence there exists an o’ € A’
such that £ a = FE o/. However, we also have A’ C Fyx. and therefore G5 > a % a'.
As shown in Lemma (1], using the fact that F satisfies G this implies £ a # E a’,
which is a contradiction.

e Assume ¥ m = A # T. Then accessibility means there exists an a’ € A such that
Gs>a = d'. Using Lemma |l] and that E satisfies G, we obtain Ea = Ea’. We do
a case distinction over the type of m’.

— Let ¥ m’ = T, so by condition 5b we obtain dom(S m') N E Fy, = (). Using
A C Fs, we have Ed’ € E Fx. Hence Ea = E a' ¢ dom(S m/).

— Otherwise, we have ¥ m' = A’ and (by condition 1c) G5 > A [ A’, which
implies F ANE A’ = () as E satisfies Gs. Assume for contradiction that
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5. Properties of Well-Typed Programs

Ea € dom(Xm’). Then Ea € E A’ by condition 5¢, but we also have
E d € E A. Finally, we obtain F a # F o' as both are contained in disjoint
sets. This is in contradiction to the equality derived above. O

5.2 Semantic Equivalence and Normalisation

In this section, we give a sketch for the proof of the core property of the type system:
If s is well-typed and alias-correct, then norm,, s is well-typed as well, and both are
semantically equivalent. You can find the definition of norm in Figure [3.5| on page

In the following, we will often make use of the fact that normalisation does not change
the alias annotation:

Lemma 4 (Normalisation preserves alias annotation). Let s be well-typed, i.e., assume
F,A’Z l_ SIT. Then Gno'r‘mms — GS'

Proof. By induction over the structure of s. For most cases, norm,, s immediately uses
the annotation from s, so the statement is trivial. For store and load, we obtain G = G
from the fact that s is well-typed. This is the only case where we use the induction
hypothesis. O

Preservation of well-typedness is straight forward to formalise:

Lemma 5 (Normalisation preserves well-typedness). Let I', A, ¥ F s: 7. Then normy, s
is well-typed, i.e., T') A, 0T & normy, s : 7.

The proof is done by induction over the type derivation and the structure of s.
Accessibility is easily proven in the normalised program since it only accesses the panorama
memory, and the focus is always empty. The only interesting case is alloc. After the
merge, only a panorama memory m is left, so the induction hypothesis for s can be used.
The merge itself is also well-typed since it uses G5 = Grnorm,, s @ annotation.

Proving the second part requires some preliminary definitions and lemmas. First of
all, of course, we need a definition of semantic equivalence.

Definition 16 (Semantic equivalence). Given a static context (I', A, ¥) and return type 7,
two programs s and sg are semantically equivalent (I, A, X IF s1 & so : 7) if either both
programs produce the same result when started with environments both are consistent
with, or both programs do not terminate:

Vo,Q: (Q]s1): TE, T, ALY A (Qs2):TE,TA X
=V (Q]s1dv) <= (Q]s2dv)

and both programs are consistent with the same environments:

Vo,Q: (Q|s1) : TEIVAY <= (Q|s2):7TF, T,A,X
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5. Properties of Well-Typed Programs

We only consider states which are consistent with the given context as we make no
attempt to guarantee anything for inconsistent executions. However, the first condition
alone would result in a notion of semantic equivalence which is not transitive. Every
ill-typed program would be equivalent to every program since there is no consistent
execution for such programs. The second condition makes semantic equivalence a proper
equivalence relation, as we proved in our Coq development.

The core theorem can now be formulated: An alias-correct program which is well-
typed using no functions and only a single memory variable (the panorama memory m)
is semantically equivalent to its normalisation.

Theorem 2 (Normalisation preserves semantics). Let I',0,07 + s : 7 and let s be
alias-correct. Then T', 0,07 I+ s = normy, s : 7.

Proof of the second condition of ~. The two states differ only in the program s. Using
the assumption and Lemma [5| both s and norm,, s are well-typed under (T, ), "). Since
we have G5 = Gporm,, s by Lemma @, all the other conditions for consistency can be
re-used, so the equivalence of consistency is easily shown. O

As a simple corollary, it follows from transitivity of semantic equivalence that two
well-typed and alias-correct programs having the same normalisation are semantically
equivalent.

If you compare above definition of semantic equivalence with the first definition of
realisability (Definition m on page , you may notice that semantic equivalence of s and
norm,, s does not imply that s is realisable. This is because our first definition does not
take the type system into account. Hence we update the definition to account for state
consistency:

Definition 17 (Realisability, final). Given a value type environment I" and return type 7,
a program s is realisable if the following holds for some m: Whenever an execution of s
starting in a consistent state terminates with value v, then so does norm,, s with the
same initial environments.

Vo,Q: (Qs): 7, T,0,0¢
=Y (Q|slv)=(Q]|normp s | v)

Furthermore, there has to be at least one consistent state:
do,Q: (Q|s):7E, T,0,07

We restrict the definition to only provide guarantees about executions consistent with
the type environment, similar to how semantic equivalence does not take into account
inconsistent executions. However, using just that condition would result in programs
which do not even have a consistent state to be realisable, as there is no execution to
reason about. Hence we require at least one consistent execution to exist.

Now it follows as a consequence of Theorem [2| that well-typed programs (under the
given static context) are realisable. This relies on the fact that given a program which
is well-typed in a static context, it is possible to synthesise a state consistent with this
context.
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Corollary 1 (Well-typed alias-correct programs are realisable). Let I', 0,07 - s : 7 and
let s be alias-correct. Then s is realisable.

5.2.1 Proof of Semantic Equivalence to Normalisation

To prove the semantic equivalence of a program and its normalisation, we establish a
relation between the states in the original execution (of the unmodified program) and
the normalised execution. However, we cannot do a lock-step simulation proof here,
i.e., a proof showing that if one program makes a step, then the other program makes
a corresponding step [Ler09aj, Sect. 3.7]. Since norm removes merge and split, it can
be the case that the normalised program performs no step where the original program
proceeded by one step. If the original program performed alloc, the normalised program
needs to advance by two steps (alloc and merge) to catch up with the original execution.

Definition 18 (Normalised state). Given a static context (I', A, X), a state R, is the
normalised state of state R for memory variable m, written I', A, X I R, ~, R, if all of
the following hold:

1. R,.E = R.E (the value environments are equal)

2. For every f € dom A, let ¢, = R,.L f and ¢ = R.L f

(a) cn.E = c.ENc,.T = cT (closed variables and argument names are the same)
(b) ¢n.m = m (the normalised function uses m as argument name for the memory)
(¢) ¢n.s = normy, c.s (the code in the normalised closure is normalised)

3. Rp.Sm = | edoms B-S m' (m in the normalised state denotes the memory
obtained by merging all original memories)

4. R,.U = R.U (the sets of used locations are the same)

5. Ry.s = normy, R.s (the normalised state contains the normalised program)

To show that this relation is maintained throughout the executions of both the original
and the normalised program, we will use the following lemma, showing an important
consequence of the two properties of type-consistent state proven in Section [5.1.T} If
we have a proof of accessibility of a for a memory variable m in a state of the original
program, then the memory S m agrees with the merged memory p at location E a.

Lemma 6. Let (E,L,S,U |s):7F, I'A,¥ and let E F Gs. Let jp = | |edomy S ™
be the memory obtained by merging all available memories. Assume G, Fx > a € X m.
Then pw(E a) = (Sm)(E a), i.e., u and the memory denoted by m have the same value at
the location described by a.

Proof. We distinguish two cases:

e Assume (Ea) ¢ dom pu. Then Fa is not a valid location for any memory, and hence
trivially (Sm)(E a) = L.
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5. Properties of Well-Typed Programs

e Otherwise, (F a) € dom pu, so there must be some memory m’ € dom with
(Sm')(E a) = p(E a). Since memories assigned to different memory variables are
disjoint by Lemma [2| there is exactly one such m/. If m = m’, we are trivially done.
Otherwise, we can use Lemma |3 to show Ea ¢ dom(Sm’), which is a contradiction
to S'm’ and p having the same value at F a. O

Now we can prove the induction step of the ‘=’ part of semantic equivalence: If the
original program takes a step, then the normalised program makes a corresponding series
of steps. Since the notion of the corresponding normalised state relies on parts of the
static context, we also need to include the new static context in the statement.

Lemma 7. Let R: 7FE, I',A,Y and let R.E F Grs. Furthermore, assume a state R,
such that T, A, ¥ Ik Ry, ~p, R and let R — R'. Then there exist a state R}, a memory
oracle o' and a static context (I',A', %) such that R’ : 7 E, TV, A',¥ and R, —* R],
and T/, N, ¥ |- R], ~,, R'.

The statement of this lemma is visualised in Figure 5.1 below, similar to the simulation
diagrams by Leroy [Ler09a, Fig. 4]. Note that in our diagram, program execution
progresses to the right, while Leroy chose programs to advance towards the bottom. Solid
arrows represent execution steps, while dashed lines show which states correspond to
each other. The split performed by the original execution has no corresponding step in
the normalised execution, hence both original states correspond to the same normalised
state. In case of store, both programs perform just one step. To catch up with the
alloc, the normalised execution performs an additional merge before a correspondent
state is reached. The load is again a single step for both programs.

The lemma can be proven by case distinction over the step performed in the original
program. For alloc, the normalised program performs two steps so that the new location
is merged into m. In case of split and merge, no normalised step is performed since
both do not change the merged global memory p: We can use R], = R,. For free,
load and store, Lemma [0]is used to justify the step of the normalised program. Using
the preservation theorem, we know that type consistency is preserved in the original
execution.

Based on this, we can prove the ‘=’ part by doing induction over the execution of
the original program. We know the original program to be alias-correct, so we have
R.E E Gps throughout the execution. The step lemma above already provides us with
the necessary proof of type consistency for the induction hypothesis. When the original
execution reaches the return statement, we know the normalised execution is also at the

. .. split store alloc load
execution of original program

1 7 7 1 1
1 - - 1 1
1

execution of normalised program
store alloc merge load

Figure 5.1: Visualisation of Lemma
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same statement (norm does not change return statements) and the value environments
agree, so the same value is returned.

Using a very similar induction, we can also show that if the normalised program is
alias-correct, then so is the original one:

Corollary 2. Let normy, s be alias-correct under static context (I',0,0T) with type 7.

Then s is alias-correct as well.

To prove this, we perform induction on the execution of the original program which
we are given. We have to show that on each state reached by this execution, the values
in E satisfy the current alias annotation. We can give a corresponding execution of the
normalised program, which we know to be alias-correct. Both end in states having the
same value environments and annotations (remember that we have G5 = Gporm,, s by
Lemma . Since the tokens in the normalised program are satisfied, so are the original
ones.

The ‘<’ part of semantic equivalence is more complicated: When the normalised
program performs a step, it could be in a state not corresponding to any original state if it
just performed the alloc, but did not yet execute the succeeding merge. To compensate
for this problem, we have to allow the normalised program to optionally perform a second
step before we can give a corresponding original state. If such a step is performed, we do
not allow the value environment E or the alias annotation to change.

Definition 19 (Optional step). A state R], is an optional step away from state R,, in
symbols R, =" R!, if

1. R, = R], (both states are the same) or

2. R, - R, NRy,.E = R,.ENGR,s = Gr s (a step was performed, but value
environment and alias annotation are preserved)

The lemma used in the induction step of the ‘=’ part can now be written down: If
the normalised program makes a step, then after another optional step it reaches a state
such that the original program can make a series of steps to the corresponding state.

Lemma 8. Let R: 7, I',A, X and let R.E F Grs. Furthermore, assume a state R,
such that T, A, 3 I+ Ry, ~,, R and let R, — R),. Then there are states R!, and R, a
memory oracle o' and a static context (T, A, %') such that R, =7 R and R —* R’ as
well as R : 7 E T/, N Y and T', N, ¥ I+ R!! ~,, R'.

This lemma is visualised in Figure [5.2] on the next page. The original program has to
perform the split before it can execute the store to reach a state corresponding to the
normalise execution. In case of alloc, the normalised program has to perform another
step to reach a state which has a counterpart in the original execution. alloc is the only
case where R, # Rl

Again, the lemma is proven by case distinction over the step performed by the
normalised program. Lemma [0] shows that if the memory access was valid in the
normalised program (for the global memory), then it is also valid for the original program
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. . store alloc merge load
execution of normalised program -
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Figure 5.2: Visualisation of Lemma

(in a possibly restricted memory). For most cases, the optional step will not be taken
and the original program performs just a single step. In case of merge or split, we have
to perform steps in the original program until we reach a statement which is neither
merge nor split (this requires an induction over the structure of the original program),
then we reach the case of another statement. For alloc, the optional step is taken to
compensate for the merge the normalised program performs: merge does not change the
value environment F, and since the program is well-typed, it has the same annotation as
the following statement. The original program performs a single step, then both are in
sync again.

Using this, we can prove the ‘<=’ part of semantic equivalence by doing induction over
the execution of the normalised program. The original program is alias-correct, so we
know the value environments will satisfy the annotations, and the step lemma provides
us with the type consistency proof for the induction hypothesis. If the optional step
was taken, we make use of the fact that the semantics are deterministic, i.e., two states
succeeding the same state are necessarily equal. Hence we can directly use the induction
hypothesis. When the normalised execution reaches the return statement, we know the
optional step was not taken since no step can be taken from there. Hence the original
execution reached a state corresponding to the current normalised state, which implies
that the value environments E are the same. After skipping store and merge statements
in the original program, we know it must consist of just the return statement. Hence the
same value is returned. This completes the proof of Theorem

We can also use Lemma [§] to prove that if the original program is alias-correct, then
so is the normalised one.

m

Corollary 3. Let s be alias-correct under static context (I',0,07) with type 7. Then
norm,;, s s alias-correct as well.

Again we perform induction over the normalised execution, obtaining a corresponding
original execution which we know to reach only states where the value environments satisfy
the alias annotation. Hence the annotation is also satisfied by the current normalised
state. If the optional step was taken, the same holds for the previous normalised state
since both agree in terms of value environments and alias tokens.
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Chapter 6

Evaluation

To evaluate the validity of our approach, we formalised IL/M and its properties in Coq.
Furthermore, we manually performed an alias analysis on a simple program to ensure
that real-world alias analysis is capable of providing the information we need.

6.1 Formalisation in Coq

The Coq formalisation of IL/M]is based on the work on IL/F by Schneider [Sch13]. Finite
sets and maps (which are used to model environments and memories) are described by
axioms. We also used axioms to describe expressions, values, types as well as evaluation
and well-typedness of expressions, so that any concrete implementation satisfying these
axioms can easily be used with our formalisation. Variable names are represented by
natural numbers. In the Coq development, we proved all the lemmas, theorems and
corollaries given in this thesis.

The formalisation is very close to the mathematical description presented here. The
most important difference is the use of De Bruijn indices |[Bru72| instead of names for
closures. Function application uses a number to describe how many function declarations
one has to ‘go up’ to find the one this application is referring to. Applying function 0
means performing direct recursion; function 1 is the most recently declared function etc.
Instead of function (type) contexts, we use simple lists of closures and function types in
states and static contexts, respectively.

Furthermore, the static context explicitly contains not only variable, closure and
memory types but also the focus. While it would be possible to compute the focus from
the memory types as we did in this thesis, this is very cumbersome in Coq. Instead, the
focus is updated as needed by the inference rules for well-typedness, and type consistency
requires the focus to be equal to the union of focus memory types.

The environments in the static context (for variable and memory types) use maps to
option where None corresponds to L. For the dynamic environments, we map variable
names directly to values and memories. We never actually need to know the domain

You can find the source code on the CD containing the digital version of this thesis, or download it
from http://www.ralfj.de/cs/bachelor.zip.
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of these environments, so it is not a problem that all the ‘other’ variable names have
associated values. Well-typed programs cannot access these names.

It turned out that goals and assumptions containing terms like S[m <- mv] [m’] are
very common. Here, S[m <- mv] is our Coq notation for S}}", i.e., updating a map. The
notation S[m’] performs a lookup in map S. We wrote a tactic called destruct_lookup
which detects such terms and automatically distinguishes the casesm = m’> and m <> m’.
This is possible as maps require the domain type (in this case, variable names) to have
a decidable equality. As a result, the term is simplified to mv and S[m’], respectively.
Based on this, the tactic crush (inspired by Chlipala |Chl12]) repeatedly tries to apply
destruct_lookup and a few other automation tactics provided by Coq like eauto,
discriminate, autoinjections and subst until it solves the goal and all new sub-goals.
This tactic was very useful since it is even able to solve goals containing several updates (e.g.
ST[m1 <- None] [m2 <- Some MemPanorama] [m’]) making use of previously established
knowledge like ST[m1 <- None] [m’] = None.

Based on this, defining the inference rules for the semantics (file ILM.v) and the
type system (file ILM_Types.v) as inductive types in Coq is straight-forward. The proof
of type preservation (Theorem (1) can be found under the name preservation (file
ILM_Preservation.v). This proof is very long and makes heavy use of crush, but it
contains only few surprises. The most complicated part was proving that the oracle still
applies (condition 6 of Definition after performing alloc, which requires reasoning
about why old pointers cannot point to the new location.

Proving that well-typed programs are semantically equivalent to their normalisation
(Theorem [2|) was more sophisticated due to the complicated inductions. The Coq proof is
called normalise_equiv (file ILM_Equivalences.v). Getting the induction hypotheses
right turned out to be quite complicated, so that invoking the actual induction tactic is
preceded by duplicating assumptions and variables, performing the right substitutions.
Then we carefully clear assumptions to obtain a usable induction hypothesis.

Coq does not deal well with tuples: Often we would give a name to the entire tuple,
so that quantifying over two states does not involve ten variable names. Then, however,
these tuples have to be destructed before the components can be properly used. Since
Coq does not choose useful variable names, this means our code contains the same long
destruct patterns over and over again. Lemmas and definitions formulated using the
components require destructing the tuple before they properly simplify, so this destruction
could often not be avoided.

On the positive side, we made heavy use of Coq existential variables, especially of
eapply. In many cases, we could avoid referencing assumptions by name since Coq could
figure out automatically which one to use. This made it much easier to use the same or
very similar tactics for many different cases, especially when doing case distinction over
the structure of a program, a step, or a typing derivation, which leads to more than ten
cases.

For these large case distinctions, the new proof structure features of Coq 8.4 came in
very handy. They make such long proofs much more readable and easier to maintain as
definitions change.
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Furthermore, we proved a few simple semantic equivalences which we justified in this
thesis using the graph representation of a program: Two store operations performed
on different memory variables can be swapped without changing the program behaviour
(file ILM_Equivalences.v). The same holds when swapping store and load, store and
free or free and load.

The Coq files come with comments explaining which definitions and lemmas in this
thesis the Coq declarations correspond to.

6.2 Reality Check

Throughout this thesis, we assumed that we have an alias analysis available which
is capable of enriching the program with equalities and inequalities of pointer values
that hold for each execution. Such information is crucial to be able to perform any
re-ordering of memory operations. We performed a manual analysis on a simple program
to ensure real-world alias analyses can provide enough information. Robert and Leroy
[RL12| describe an alias analysis on RTL, one of the intermediate languages used by the
CompCert C compiler [Ler09a|. RTL is a low-level imperative language without explicit
memory. It operates on pseudo-registers of which each function has an unlimited supply.

The analysis is proven sound in Coq, and it is able to deal with dynamically allocated
memory. It computes, for each program point, a set of abstract locations a register can
point to. It also maintains an abstract memory state, mapping abstract pointers to
sets of abstract locations, to have information available for pointers obtained via load.
However, this is not needed for our example, so we omit it in the following. Abstract
locations are identified by an abstract block and an offset into that block, which can
be unknown. Blocks include the current Stack frame, Allocs(All) to denote the entire
memory area allocated by the current execution of the function, and Allocs(Just ;) to
describe the memory area allocated at the given line during the current execution of the
function (which can be arbitrary many locations, if that line is within a loop).

We used the following simple program, an extended imperative implicit-memory
version of the example used throughout Section

a = alloc();
b = alloc();
store(a, v);
store(b, w);
x = load(c);

Note that above syntax is not actual RTL: It is straight forward to translate to RTL,
and we do not care about the low-level details necessary to access memory in RTL (like
the word size, i.e., the amount of bits read from memory).

The information obtained by the alias analysis about this program is given in Table
on the following page. The offset is always 0 since IL/M does not support compound
data types, so the allocated memory block is a singleton block (with just one location).
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abstract register state before statement

alloc();
alloc();
a < {(Allocs(Just l1),0)},b < {(Allocs(Just l2),0)} | store(a, v);
a < {(Allocs(Just [1),0)},b < {(Allocs(Just l2),0)} | store(b, w);
a + {(Allocs(Just [1),0)},b < {(Allocs(Just l2),0)} | x = load(c);

a
a < {(Allocs(Just [1),0)} b

Table 6.1: Results of Robert and Leroy’s alias analysis on the sample program

The alias analysis comes with a notion of disjoint abstract locations, where two
abstract locations are disjoint if they refer to disjoint abstract blocks, or if the offsets are
both known and different from each other. Two sets of abstract locations are disjoint
if all the locations they contain are pairwise disjoint. Since abstract blocks of memory
allocated at different program points are disjoint, the sets of abstract locations for a and
b are disjoint.

Using the corollary nonaliasing_sound of the soundness of the alias analysis [RL12,
Sect. 5], the concrete values of registers with disjoint sets of abstract locations are different
for each execution. Hence adding the token a 2 b to the corresponding IL/M program
is justified, which allows making the store operations independent of each other (see

Section [4.1)).
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Chapter 7

Conclusion

We described a language called IL/M which is capable of representing independence of
memory operations. Independent operations can easily be reordered, no further analysis
is required to ensure that the behaviour of the program is preserved. The language uses
alias information (equalities and inequalities of pointer values holding for each execution)
to justify this independence. Based on that information, we presented a type system for
IL/M which guarantees that well-typed programs are easy to translate to machine code
despite the functional approach we take to model memory.

Furthermore, the type system provides support for program transformations which
mark memory operations independent. The program graph induces a partial order such
that independent operations are not ordered. The typing relation can provide semantic
guarantees by restricting which variables can be used to load or store in a memory: A
memory access is allowed only if the annotated alias information provides a proof that
unordered accesses do not interfere, i.e., they do not affect the same memory location.

If a transformation relaxes the order of memory operations, it can prove the resulting
program to be semantically equivalent to the original one by proving its well-typedness.
This is achieved by defining a general transformation called normalisation which makes
each memory operation depend on the previous one, and proving that a well-typed
program and its normalisation exhibit the same behaviour. Relaxing dependencies does
not alter the normalisation, hence the desired semantic equivalence follows immediately.
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7. Conclusion

Another consequence is that well-typed programs can be easily executed on real
machines. Transforming the program such that memory operations are linearised does
not change the normalisation, and translating the product of this transformation to
machine code with instructions to access the global memory is straightforward.

7.1 Limitations and Future Work

Currently, IL/M forbids pointer arithmetic to keep the memory model simpler. In order
to actually model C, the language needs to be extended to support calculations on
pointers. As mentioned in Section this requires the types of values stored in memory
cells to be tracked in the semantics, since the result of a load depends on the type used
to access memory. Using a type incompatible with the value stored at the given location
results in the program getting stuck. This approach is used by the CompCert verified
C compiler [LBO8]. The memory oracle we introduced to formulate type consistency
would no longer be needed. However, we do not expect this to affect the alias annotations
and the requirements the type system imposes to provide its guarantees with regard to
normalisation.

Extending functions to support arbitrary memory arguments would allow the program
structure to express that a loop (which in IL/M is translated to recursive function
application) affects only a small part of the memory. The remaining memory can be
forwarded unaltered. Currently, IL/M enforces merging all memory before calling a
function, i.e., before entering the loop body. This extension severely complicates handling
function application in the type system, but we expect the remainder of the type system
and the consistency relation to need few changes.

Furthermore, IL/M does not provide for compounds, i.e., structures and arrays. How-
ever, since we did not make explicit which values the language works on, compounds could
be handled completely hidden from IL/M. Based on the extension for pointer arithmetic,
expressions could be used to obtain values, including pointers, from a compound value.

It may also seem that alias annotations have to be extended to be able to refer to
values stored inside a compound. However, we believe this is not the case: The language
requires a program to first obtain the value from a compound before doing memory access
with it. Expressions are not allowed as arguments for store or load. Hence the task of
tracking values of pointers stored in compound values or in the memory can be performed
by the alias analysis. It can annotate the equalities and inequalities it inferred once the
pointer is stored in a simple variable. The proof of correctness of that annotation then
still has to deal with where that pointer value comes from, but for the type system it is
only relevant that the required (in)equalities hold once the memory access is performed.

An alternative approach to introduce compounds, which allows pointers addressing
parts of a compound (like elements of a structure), would be to make them explicit in
IL/M. In this case, types would need more structure to represent these constructions.
Furthermore, the syntax would be extended by a new statement to obtain the address of
an element, given the address of the compound value. Concerning the alias annotations,
the same considerations as above apply.
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