Research Statement

Ralf Jung

Improving the reliability of software is a critical problem. My research is
about developing compositional formal methods to increase software reliability.
Formal methods complement other techniques, such as testing, which has a lower
bar of entry but does not work well in the face of high degrees of non-determinism
(such as in concurrency) or malicious adversaries (such as in security). In order
to be able to handle massive, real systems such as OS kernels or web browsers, 1
am convinced that we have to develop compositional formal methods. Instead
of analyzing a large system all at once, a compositional analysis proceeds by
determining abstraction boundaries, verifying that the desired property holds
true for each component, and showing that composing components preserves the
property.

Probably the most widespread form of compositional analyses are type systems,
which are commonly used to show that programs are memory safe, but can
also scale to other properties. I work on verifying the correctness of type
systems by considering the types on a library interface as describing a semantic
contract between the library and its client. The contract is set up such that
it is automatically satisfied by well-typed code, but the key strength of this
approach is that non-well-typed code can still be shown to follow the contract.
Non-well-typed code can arise when working with data structures that are type-
safe for reasons too subtle for the type system to understand, like a low-level
implementation of a data structure that is heavily optimized to reduce memory
consumption and increase performance. The semantic approach enables the
compositional integration of well-typed and non-well-typed components: only
the non-well-typed pieces need to be carefully analyzed to show that the entire
program enjoys the type system guarantees.

Defining the precise contract between a library and its (typed) clients can
require a sophisticated program logic. This connects to another focus of my
research: I work on a logic that is able to give modular specifications to algorithms
and data structures in a higher-order, concurrent, imperative language. Beyond
the scope of typical program logics, this logic is also suited to verify type systems
(using the approach described in the previous paragraph) and it can handle
relational properties, such as compiler correctness.

The confidence derived from a correctness proof (be it of a type system, a logic,
or some program component) entirely rests on that proof being carefully checked
for errors. To increase that confidence and reduce the amount of burdensome
manual proof checking, all of my work is formalized in the Coq Proof Assistant.

Ongoing research

Rust type system

Recently, the main focus of my research has been the Rust programming language.
Rust is a young programming language (released in 2015) developed by Mozilla,
and used not just in Mozilla’s Firefox browser, but also by companies such as



Dropbox, Google and Amazon. Its key selling point is combining type safety
properties such as memory safety and data-race freedom with a programming
model that enables optimizing for performance like one would in languages such
as C or C++. However, because a type checker will never be able to accept all
correct programs, Rust also features unsafe blocks that unlock non-type-safe
operations. These unsafe blocks are typically hidden behind an API surface
with the promise that well-typed code cannot cause memory errors or data races
by interacting with this library. This leads to a compositional ecosystem of
high-performance libraries that can be safely used in higher-level code without
worrying about incorrect usage of the library’s interface.

We have built the first formal proof of correctness of the Rust type system [9]
as part of the RustBelt' research project. We also verified the correctness of
some of the most important data structures in the standard library, meaning we
showed that the unsafe code they use internally is safely encapsulated by their
API: any well-typed code interacting with these libraries is still memory safe and
data-race free. Moreover, the approach we chose is compositional: even though
the individual abstractions were verified independently of each other, the safety
result scales to safe programs that combine these abstractions in arbitrary ways.
To achieve this, we built a semantic model of Rust’s type system, formalizing
the contract that well-typed functions must satisfy to be safely callable.

Our work has led to the discovery of a bug in Mutex [5] (implementing mutual
exclusion and used for lock-based concurrent programming), and follow-on work
by collaborators that incorporates weak memory into RustBelt [2] has found
another bug in Rust’s atomically reference-counted pointer (Arc) [8].

Based on this formal model, I have closely interacted with the Rust language
team during the development of a new feature for pinning [4, 6], a cornerstone
in Rust’s growing support for supporting asynchronous programming.

This research is specific to Rust, but the general approach is not: unsafe
escape hatches similar to unsafe blocks are a common feature even in type-safe
languages (such as 0bj.magic in OCaml, unsafePerformI0 in Haskell), and
the same methodology can also be applied to reason about the interaction of a
type-safe language with a non-type-safe language (such as calls from/to code
written in C, which most languages allow).

Key challenge: Interior mutability. One particularly interesting class of
unsafely implemented libraries are those that exhibit interior mutability. These
libraries violate what is otherwise a core type system invariant: data is either
mutable or aliased, but never both. In contrast to that, types like Mutex enable
mutation in the presence of aliasing. The reason such types can still be used
safely is that they only permit mutation of aliased state in a highly controlled
manner. For example, Mutex performs run-time checks to make sure only one
thread ever actually gets access to the data and can mutate it. The key to
handling interior mutability was to not only let library types pick their own
invariant as part of their contract with the environment, but also to let them
pick their own mechanism for sharing.

IProject website: https://plv.mpi-sws.org/rustbelt/


https://plv.mpi-sws.org/rustbelt/

Iris

To give a semantic model of Rust’s type system requires a logic that is expressive
enough to reason about ownership and borrowing. How to handle ownership
using separation logic has been explored in great depths over the last decades,
and the last couple of years have seen a significant boost in expressive power
enabling these logics to reason about subtle interactions of concurrent algorithms
and data structures. All of these logics typically come with some built-in notion
of how to reason about the interaction of multiple threads acting on shared state,
e.g., they fix a particular style of state-transition systems.

The core design principle of Iris® [12, 10, 15, 11] is to focus on a small,
expressive core logic that enables the user of the logic to derive new reasoning
principles without having to extend the core logic. In particular, the reasoning
principles of many previous logics can be encoded inside Iris, not only giving a
higher-level justification for their correctness, but also enabling the composition
of program components that were verified with different techniques. I have led
the development of Iris from the start, and at this point Iris has been used in
several other verification projects [17, 20, 13, 21, 19, 3, 1, 9] and has more than
130 citations (according to Google Scholar).

For example, Iris’ ability to incorporate new reasoning principles was crucial
in verifying Rust’s type system, where we developed the lifetime logic as a way
to reason about borrowing. Proving the correctness of the lifetime logic required
combining many of Iris’ features in a novel way, but we did not have to extend
Iris itself—the existing mechanisms provided by Iris were flexible enough to also
handle the new concepts introduced by the lifetime logic. This logic is thus just
a set of lemmas proven in Iris, and can be composed with any other Iris proof.

Iris is being developed in the Coq Proof Assistant. Thanks to a proof mode
developed mainly by my collaborator Robbert Krebbers, it is the first separation
logic to provide the usual user experience of interactive proof assistants, including
support for higher-order quantification and magic wand [16, 14]. This has been
instrumental not only to increase confidence in our results, but also to enable
the continued development of the foundations of Iris. Proof assistants enable
fearless refactoring and avoid tedious manual re-checking of existing proofs.

Logical atomicity. Having a powerful and expressive program logic is just one
ingredient to verifying a library. The other important aspect is to figure out which
specification to prove. Even seemingly simple questions like “What is a stack?”
are not easy to answer when concurrency comes into play. One common approach
is to use linearizability or contextual refinement, which means that the complex
real implementation can be replaced by a much simpler, “obviously correct”
implementation for the purposes of reasoning. That simple implementation
effectively serves as specification.

The problem with this approach is that linearizability is external to a program
logic and thus cannot be directly applied when verifying, inside the logic, clients
that use the data structure. For example, concurrent separation logics including
Iris typically give special power to atomic operations: they cannot be interrupted
by other threads, and hence they can get exclusive access to shared state for
an atomic instant. The push operation of a linearizable stack, however, is not

2Project website: https://iris-project.org/


https://iris-project.org/

an atomic operation from the perspective of the program logic. Even though
linearizability means that it is observably atomic, it internally consists of many
program steps, and hence does not get the same special power that “physically”
atomic operations have.

A promising approach to mitigate this problem is to define a logical notion of
atomicity, in the form of Hoare triples that not only specify pre- and postcondi-
tions, but also indicate that the operation happens atomically. Such operations
are robust to interference from other threads and hence permit exclusive access
to shared state in a way that is otherwise only permitted for “physically” atomic
operations.

Unlike prior approaches to logical atomicity that bake in such a notion as
a logical primitive, we have followed the Iris methodology and defined logical
atomicity inside Iris. We can thus use any reasoning principle encoded in Iris
to verify a logically atomic specification, and compose proofs carried out using
different techniques. We have used this to verify the correctness of an elimination
stack, a subtle concurrent data structure that relies on one thread completing
the action of another. In ongoing research, we are showing that this approach
even scales to handling prophecy variables, where the order in which multiple
atomic actions seem to occur is not fixed until after the fact.

Specifying programming language semantics

The verification of a program relies on a precise specification of the language
the program is written in. Unfortunately, for low-level languages such as Rust,
developing a specification that is precise, suited for reasoning about programs,
and matches real program behavior is still an open problem. I have been working
on this problem from two angles.

Developing a specification for Rust. I have worked closely with Mozilla
and the Rust community during two summer projects (2017 and 2018) to help
flesh out a specification for unsafe code in Rust. (RustBelt made some simplifying
assumptions to avoid having to deal with the open questions in the semantics
of Rust.) One challenge here is that the Rust compiler developers would like
to have optimizations that exploit the fact that data is never both aliased and
mutable. However, unsafe code is able to subvert these type system guarantees.

We would like the language specification to declare this an illegal operation
in unsafe code (making it undefined behavior), such that it is the responsibility
of the unsafe code author to make sure it does not subvert assumptions the
compiler is making. I have worked on a set of rules that achieves this, and
implemented these rules in an interpreter that can be used to check if real code
complies with the new requirements [7]. This work has already found some bugs
in the standard library, but it is still very much in progress.

Moreover, I am an active member of the Rust Unsafe Code Guidelines
Working Group?, which has the goal of developing a set of guidelines for unsafe
code authors to follow in order to ensure that their code does not violate Rust’s
safety guarantees. At this stage, we are determining the current set of de-facto
rules for unsafe code, and starting to build a framework for an eventual proper
specification of undefined behavior in Rust.

3Project website: https://github.com/rust-rfcs/unsafe-code-guidelines/


https://github.com/rust-rfcs/unsafe-code-guidelines/

Clarifying the semantics of LLVM IR. There still is a big gap between
the semantics of Rust and what actually gets executed on the machine: Rust
is built on top of the LLVM library, which comes with its own intermediate
representation (IR). To argue that Rust’s type system guarantees are preserved
by compilation, we need to first understand the semantics of the LLVM IR.
LLVM IR is heavily optimized, and one challenge in defining the semantics of
the LLVM IR is making sure that all these optimizations are actually correct
under the proposed semantics—or else demonstrating that some of them are
incompatible with each other and cannot soundly coexist on the same language.
I have worked with collaborators on a formal model of the LLVM IR that justifies
significantly more transformations than any previous proposal [18].

Future research

Expanding RustBelt

The RustBelt model of Rust does not model some important aspects of the
language such as panics (which is a mechanism similar to exceptions), and
automatic destructors (which have a special kind of unsafe escape hatch). These
are obvious candidates for future work.

Moreover, my summer projects with Mozilla on determining rules for aliasing
in unsafe code have not been incorporated into RustBelt yet. I would like to
formalize these rules in Coq and show that the Rust type system and the libraries
we verified are sound with respect to the aliasing model. Moreover, I would also
like to prove that the desired transformations can indeed soundly be carried out
if all code is assumed to follow these rules.

Verifying a Rust library currently requires a manual translation from the
Rust source code to the formal language we use in RustBelt, called Aryst. I
would like to adjust Arust to be closer to one of the intermediate languages in the
Rust compiler (MIR, the mid-level intermediate language that the interesting
analyses like checking borrowing operate on) so that we can have an automatic
translation from the Rust source code to the formal Coq development.

Such a formal model of MIR would also enable a direct verification of the next-
generation Rust borrow checker, dubbed “Polonius” (the borrow checker is the
part of the Rust compiler that enforces the no-aliased-mutable-state property).
Polonius is described as a set of clauses in the spirit of logic programming, so a
formal verification of the actual algorithm used by the compiler should be feasible.
The Rust developers are always interested in relaxing the borrow checker to
accept more programs, and have expressed interest in collaborating to ensure
that this does not introduce unsoundness.

Another interesting avenue is to incorporate my work on a formal semantics
of LLVM: I would like to show that Rust’s translation strategy from MIR to the
LLVM IR is actually correct. This will require modeling of LLVM features that
have not been formally specified yet, like the noalias attribute.

Beyond linearizability

As described above, I have used Iris to explore a notion of logical atomicity,
a program-logic equivalent to linearizability, in order to specify correctness of



concurrent data structures such as stacks. Logical atomicity works great for
specifying operations that can be described as a single action, but falls short when
talking about operations that consist of multiple observably separate actions,
such as map/fold on collections, or traversal of a tree (e.g., file system lookup).
I would like to research methods to scale logically atomic specifications to those
situations.

Moreover, so far, logical atomicity has only been studied in the context of
sequential consistency. When moving away to more realistic models of concurrent
memory, it is not clear whether linearizability-like approaches such as logical
atomicity are still the best way to specify components of a concurrent system.
Other notions of library correctness have been proposed, and I would like to
research how they can be integrated with the existing work on weak memory in
Tris [13, 2].

More automation for Rust verification

So far, all my verification efforts have been entirely manual. I would like to
collaborate with experts in automated verification techniques to work towards
a tool that can automatically or at least semi-automatically verify unsafe Rust
code against the RustBelt model. This is a very long-term project. The ideal
outcome would be a tool that can translate a library’s typed API and code
into proof obligations, discharge as many of them as possible automatically,
and in case the automation gets stuck let the user provide manual guidance
in some high-level logic geared towards reasoning about Rust types. The tool
would run as part of regular automated testing to ensure that the library and its
proof remain in sync. The tool could translate successful proofs into certificates
that can be verified by Coq, enabling a manual proof in Coq as a (sound and
compositional) fall-back mechanism and resulting in a proof from first principles
that the library satisfies its API contract.

References

[1] Ales Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. Iron:
Managing Obligations in Higher-Order Concurrent Separation Logic. To
appear in POPL. 2019.

[2] Hoang-Hai Dang, Jacues-Henri Jourdan, Jan-Oliver Kaiser, and Derek
Dreyer. RustBelt Relazed. Submitted for publication. 2018.

[3] Dan Frumin, Robbert Krebbers, and Lars Birkedal. “ReLoC: A Mechanised
Relational Logic for Fine-Grained Concurrency”. In: LICS. 2018, pp. 442—
451.

[4] Ralf Jung. A Formal Look at Pinning. Blog post. 2018. URL: https:
//www.ralfj.de/blog/2018/04/05/a-formal-look-at-pinning.html.

[5] Ralf Jung. How MutexGuard was Sync When It Should Not Have Been.
Blog post. 2017. URL: https://www.ralfj.de/blog/2017/06/09/
mutexguard-sync.html.

[6] Ralf Jung. Safe Intrusive Collections with Pinning. Blog post. 2018.
URL: https://www.ralfj.de/blog/2018/04/10/safe-intrusive-
collections-with-pinning.html.


https://www.ralfj.de/blog/2018/04/05/a-formal-look-at-pinning.html
https://www.ralfj.de/blog/2018/04/05/a-formal-look-at-pinning.html
https://www.ralfj.de/blog/2017/06/09/mutexguard-sync.html
https://www.ralfj.de/blog/2017/06/09/mutexguard-sync.html
https://www.ralfj.de/blog/2018/04/10/safe-intrusive-collections-with-pinning.html
https://www.ralfj.de/blog/2018/04/10/safe-intrusive-collections-with-pinning.html

[14]

Ralf Jung. Stacked Borrows Implemented. Blog post. 2018. URL: https://
www.ralfj.de/blog/2018/11/16/stacked-borrows-implementation.
html.

Ralf Jung. The Tale of a Bug in Arc: Synchronization and Data Races.
Blog post. 2018. URL: https://www.ralfj.de/blog/2018/07/13/arc-
synchronization.html.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
“RustBelt: Securing the Foundations of the Rust Programming Language”.
In: PACMPL 2.POPL (2018), 66:1-66:34.

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. “Higher-
order ghost state”. In: ICFP. 2016, pp. 256—269.

Ralf Jung, Robbert Krebbers, Jacues-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. “Iris from the ground up: A modular founda-
tion for higher-order concurrent separation logic”. In: Journal of Functional
Programming 28 (2018), e20.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. “Iris: Monoids and Invariants as
an Orthogonal Basis for Concurrent Reasoning”. In: POPL. 2015, pp. 637—
650.

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor
Vafeiadis. “Strong Logic for Weak Memory: Reasoning About Release-
Acquire Consistency in Iris”. In: ECOOP. Vol. 74. LIPIcs. 2017, 17:1—
17:29.

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,
Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer.
“MoSeL: A General, Extensible Modal Framework for Interactive Proofs
in Separation Logic”. In: PACMPL 2.ICFP (2018), 77:1-16:30.

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek
Dreyer, and Lars Birkedal. “The Essence of Higher-Order Concurrent
Separation Logic”. In: ESOP. Vol. 10201. LNCS. 2017, pp. 696-723.

Robbert Krebbers, Amin Timany, and Lars Birkedal. “Interactive Proofs in
Higher-Order Concurrent Separation Logic”. In: POPL. 2017, pp. 205-217.

Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. “A Rela-
tional Model of Types-and-Effects in Higher-Order Concurrent Separation
Logic”. In: POPL. 2017, pp. 218-231.

Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr,
and Nuno P. Lopes. “Reconciling High-level Optimizations and Low-level
Code in LLVM”. In: PACMPL 2.00PSLA (Oct. 2018), 125:1-125:28. 1SSN:
2475-1421.

David Swasey, Deepak Garg, and Derek Dreyer. “Robust and Composi-
tional Verification of Object Capability Patterns”. In: PACMPL 1.00PSLA
(2017), 89:1-89:26.

Joseph Tassarotti, Ralf Jung, and Robert Harper. “A Higher-Order Logic
for Concurrent Termination-Preserving Refinement”. In: ESOP. Vol. 10201.
LNCS. 2017, pp. 909-936.


https://www.ralfj.de/blog/2018/11/16/stacked-borrows-implementation.html
https://www.ralfj.de/blog/2018/11/16/stacked-borrows-implementation.html
https://www.ralfj.de/blog/2018/11/16/stacked-borrows-implementation.html
https://www.ralfj.de/blog/2018/07/13/arc-synchronization.html
https://www.ralfj.de/blog/2018/07/13/arc-synchronization.html

[21] Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal.
“A Logical Relation for Monadic Encapsulation of State: Proving contextual
equivalences in the presence of runST”. In: PACMPL 2.POPL (2018), 64:1-
64:28.



