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Program logics have proven a successful strategy for verification of complex programs. By providing local

reasoning andmeans of abstraction and composition, they allow reasoning principles for individual components

of a program to be combined to prove guarantees about a whole program. Crucially, these components and

their proofs can be reused. However, this reuse is only available once the program logic has been defined. It

is a frustrating fact of the status quo that whoever defines a new program logic must establish every part,

both semantics and proof rules, from scratch. In spite of programming languages and program logics typically

sharing many core features, reuse is generally not available across languages. Even inside one language, if

the same underlying operation appears in multiple language primitives, reuse is typically not possible when

establishing proof rules for the program logic.

To enable reuse across and inside languages when defining complex program logics (and proving them

sound), we serve program logics à la carte by combining program logic fragments for the various effects of the

language. Among other language features, the menu includes shared state, concurrency, and non-determinism

as reusable, composable blocks that can be combined to define a program logic modularly. Our theory builds

on ITrees as a framework to express language semantics and Iris as the underlying separation logic; the work

has been mechanized in the Coq proof assistant.
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1 Introduction
Program logics are a widely successful approach to program verification [14, 45, 40, 9, 2, 27, 29, 19].

However, they require a non-trivial amount of preparation, especially for programs written in

complicated languages. First, a formal definition of the language semantics needs to be developed,

Then, one must find and state the rules of the program logic. Finally, the two need to be connected

by a soundness proof.
Let us consider what is required to build a program logic for a new language. Probably our

language has some form of global mutable state; maybe it has concurrency; maybe it has other

forms of non-determinism. The dominant approach to defining language semantics is to use an

operational semantics, which has standard ways to model all these language features. To obtain a

program logic, again there are common ways of reasoning about such features (the combination of
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mutable state and concurrency makes concurrent separation logic a common choice), so we know

the rough shape the logic takes, and we just have to make some adjustments to account for the

particularities of our concrete language. Maybe the language has some particularly complicated

operation that does many things at once; this will require a complicated transition in the operational

semantics and an associated complicated proof rule in the program logic. To justify the correctness

of the logic, we again have to do proofs that are largely standard.

All of this is a lot of work! If one aims to fully formalize the entire logic and soundness proof

(whether on paper or in a mechanized proof), one ends up proving very similar theorems for each

new language. The pattern is always the same, but there is no reusable theorem that would let us,

say, “plug in” a heap with associated points-to assertions ℓ ↦→ 𝑣 to obtain the standard separation

logic reasoning principles.

Fundamentally, this is caused by the fact that typical language definitions are monolithic: an

operational semantics captures all the state that is relevant for the behavior of the program, and a

single relation describes how all language constructs act on the entire state. Operational semantics

provide no clear way to define the operational behavior of a heap once and for all, and turn it

into a reusable component with associated reasoning principles. It also provides no good way to

compose a single, complicated operation from smaller pieces: every program step is a single state

transition. This becomes particularly onerous for concurrent languages where the steps of a small-

step operational semantics typically mark the granularity of atomicity, meaning that one cannot

simply define a complicated atomic operation as syntactic sugar for many smaller operations.

In this paper, we present program logics à la carte: a new approach for defining program semantics

and associated program logics from reusable building blocks.

To achieve this, we leverage ITrees [48] to represent program semantics in a style that is closer

to denotational semantics rather than operational semantics. ITrees provide a general monadic

encoding of effectful computations in a pure meta-language. They are parametric in the set of effects

that the program may invoke. Examples of such effects are non-determinism, state, or concurrency.

In this work, we consider these effects to be the building blocks that make up a program semantics.

The core of our work is a general program logic for arbitrary ITrees. Just like ITrees are param-

eterized over effects, our program logic is parameterized over logical effect handlers that define
the verification condition for invoking an effect (think: preconditions and postconditions). We

have implemented logical effect handlers for a number of common effects, including mutable state,

non-deterministic choice (both demonic and angelic), concurrency, and abnormal program failure.

These are the building blocks that a language designer has at their disposal, and they all come

with an associated program logic fragment that is established once-and-for-all, and an adequacy

theorem showing soundness of this program logic fragment.

A language designer can pick the effects of their choice from this menu and describe the language

semantics by denoting their language into ITrees, composing the primitive operations provided by

these effects to build up the core language operations as needed. They can then use the general

ITree program logic to define a language-specific program logic. The program logic fragments of

each effect are automatically available, and their proof rules can be used to build up the reasoning

principles for the core language operations. Crucially, we are able to use the compositional power

of program-logic-based reasoning to establish the program logic itself. ITrees serve as a common

foundation for effectful computation—a shared domain with a wide range of applicability.

Our program logic is based on Iris [21], which is a natural choice since Iris already has a strong

focus on modularity and reuse: Iris is a “separation logic framework” designed to serve as the

foundation for domain-specific separation logics [20, 6, 33, 32, 16, 35, 28]. Iris already provides

reusable building blocks for “ghost state” constructions to capture common reasoning patterns

(such as finite maps with fractional per-key permissions, or append-only lists). However, so far
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only very limited reuse was possible for the part of the program logic that directly interacts with

the language semantics, leading to a lot of duplicated effort across Iris-based projects. With our

new approach, this is no longer necessary: language components and their associated program

logic rules can be shared and reused with the same ease that Iris users already commonly share

and reuse purely logical components.

Contributions. The key contributions of our work are a novel, general-purpose program logic for

ITrees and a library of effects with associated reasoning principles expressed in that program logic.

We have built effect libraries for concurrency, global state, demonic and angelic non-determinism,

safe and unsafe program termination, and partial correctness. The program logic is proven sound (or

“adequate”) w.r.t. two notions of execution for ITrees: the typical ITree approach involving gradual

interpretation of events, and a novel translation of ITrees into state machines. To demonstrate

the potential for reuse and the applicability of this framework, we have ported two existing

Iris-based program logics: the default Iris example language, HeapLang, as well as the language

used by Islaris [32], a verification approach for machine-code programs against authoritative ISA

specifications. The HeapLang program logic supports both total and partial correctness reasoning

and comes with a provably-sound interpreter (including a termination proof).

Formalization in Coq. All our work is mechanized in the Coq proof assistant [42]. Our devel-

opment uses three axioms: To deal with destruction of dependent types, we make use of Axiom

K [43]. In relating the interpretation semantics and operational semantics of HeapLang in §6, we

make use of the functional form of the (non-extensional) axiom of choice [43]. Finally, we use an

axiom that promotes strong ITree bisimulation to equality. Bisimulation-is-equality axioms are

sometimes used when working with coinductively defined data types in Coq because Coq’s notion

of equality on coinductively defined data types is far too fine [47, 15].

Structure of the paper. The rest of the paper is structured as follows: First, §2 gives an overview

of our approach by gradually equipping a language with more and more effects and building up

an associated program logic alongside. It also shows how to prove program logics adequate with

respect to semantics based on “interpretations”. Then, §3 explains how our program logic and effect

libraries are defined in technical detail. The next two sections extend these foundations to cover

more kinds of effects: §4 deals with concurrency and §5 handles angelic choice. Finally, §6 and §7

describe the HeapLang and Islaris case studies. We conclude by discussing related work in §8.

2 Key Ideas
In this section, we showcase the key ideas of this paper by building a simple example language and

an associated program logic step-by-step. Each step adds one more building block, demonstrating

how the language and program logic are built up from reusable components.

2.1 Starting Point: A Pure Lambda Calculus (𝜆Z)
We start with 𝜆Z, a basic untyped 𝜆-calculus with integers, addition, and if-expressions:

𝑣 ∈ valF 𝑧 | 𝜆𝑥 . 𝑒 (𝑧 ∈ Z) 𝑒 ∈ exprF 𝑣 | 𝑥 | 𝑒1 +̂ 𝑒2 | 𝑒1 (𝑒2) | if 𝑒1 then 𝑒2 else 𝑒3
Background: ITrees. To reason about 𝜆Z, we first need to give it a semantics. For this, we use

a denotational semantics with interaction trees or ITrees [48] as our domain. ITrees are a general

domain for representing effectful computations. The ITree type itree 𝐸 𝑅 is parameterized by a

return type 𝑅 : Type and an event type 𝐸 : Type→ Type. The type 𝐸 𝐴 should be understood as

those events 𝜖 which have answer type 𝐴, that is, which return an answer 𝑎 : 𝐴. Intuitively, an

ITree is a computation consisting of three kinds of steps: it can either (1) terminate and return a
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J𝑣K := Ret(𝑣)
J𝑒1 +̂ 𝑒2K := 𝑣1 ← J𝑒1K; 𝑣2 ← J𝑒2K; 𝑧2 ← to_int(𝑣2); 𝑧1 ← to_int(𝑣1);Ret(𝑧1 + 𝑧2)
J𝑒1 (𝑒2)K := 𝑣1 ← J𝑒1K; 𝑣2 ← J𝑒2K; (𝑥, 𝑒) ← to_lam(𝑣1); J𝑒 [𝑣2/𝑥]K

Jif 𝑒1 then 𝑒2 else 𝑒3K := 𝑣1 ← J𝑒1K; 𝑧1 ← to_int(𝑣1); if 𝑧1 ≠ 0 then J𝑒2K else J𝑒3K
to_int(𝑣) :=match 𝑣 with 𝑧 =⇒ Ret(𝑧) | _ =⇒ fail end

to_lam(𝑣) :=match 𝑣 with 𝜆𝑥 . 𝑒 =⇒ Ret((𝑥, 𝑒)) | _ =⇒ fail end

Fig. 1. Denotational semantics of 𝜆Z.

value of type 𝑅, (2) perform a silent step, or (3) perform an effectful computation by emitting an

event 𝜖 that describes the effect that is performed. Formally, ITrees are coinductively defined as

𝑡 ∈ itree 𝐸 𝑅 ::=coind Ret(𝑟 : 𝑅) | Tau(𝑡 : itree 𝐸 𝑅) | Vis𝐴 (𝜖 : 𝐸 𝐴, 𝑘 : 𝐴→ itree 𝐸 𝑅)
where

(1) Ret(𝑟 ) represents just returning value 𝑟 : 𝑅,
(2) Tau(𝑡) represents taking a silent step and continuing the computation 𝑡 , and

(3) Vis𝐴 (𝜖, 𝑘) represents emitting an event 𝜖 : 𝐸 𝐴, receiving answer 𝑎 : 𝐴, and then continuing

with 𝑘 (𝑎). (We shall often elide 𝐴 and write just Vis(𝜖, 𝑎).)
Tau steps do not represent a visible action in the program, and as such, it is often desirable to

ignore them. However, infinite sequences of Tau steps (which are possible due to ITrees being a

coinductive data type) are still relevant since they represent diverging computations. To this end,

ITrees come with the bisimulation ≈, known as “equivalence up to (finitely many) Taus”, which
allows removing/introducing finitely many Taus on either side. This is the canonical extensional

notion of equality on ITrees.

itree 𝐸 𝑅 is a monad in 𝑅. More specifically, the monadic laws hold up to ≈. The monadic bind

enables us to write ITrees in the style of sequential code: 𝑥1 ← · · · ;𝑥2 ← · · · ; · · · .

Denotation. To define the semantics of 𝜆Z, we are looking to denote expressions into ITrees.

The first step is to pick a suitable set of events 𝐸. So far, our language has one effect (not counting

non-termination which is natively supported by ITrees): programs can fail, such as when trying

to add a number and a function. To represent failure, we use an event type FailE with a single

event fail with answer type ∅, thus giving us access to an operation fail : itree FailE ∅.1 A failure

does not return but “crashes” the program and thus the answer type of fail is the empty set. To

summarize, the set of events for 𝜆Z is:

LangEZ := FailE

With LangEZ at hand, we can define a function J_K that maps (closed) expressions into the

domain itree LangEZ val as shown in Figure 1. This is a shallow embedding: pure computations in

the language are mapped to computations in the meta-logic, as can be seen for the addition or if-

expressions. Operations not supported by the meta-logic are treated monadically. We can also easily

represent non-structural recursion (as in the case of function application) thanks to the general

fixpoint combinator provided by ITrees. J_K can be viewed as a form of denotational semantics, but

note that events are still uninterpreted at this stage and hence treated purely syntactically.

1Here, we implicitly coerce events 𝜖 to ITrees that emit this event, e.g., if we write fail in a context where an ITree is

expected, it implicitly desugars it to Vis(fail, (𝜆𝑎. Ret(𝑎) ) ) . This construction is called trigger in the ITree library.
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WpConseqence

∀𝑟 . Φ(𝑟 ) ⊢ Ψ(𝑟 ) wp 𝑒 {Φ}
wp 𝑒 {Ψ}

WpFrame

𝑃 ∗ wp 𝑒 {Φ}
wp 𝑒 {𝑣 . 𝑃 ∗ Φ(𝑣)}

WpVal

Φ(𝑣)
wp 𝑣 {Φ}

WpBindPlusL

wp 𝑒1 {𝑣1 . wp 𝑣1 +̂ 𝑒2 {Φ}}
wp 𝑒1 +̂ 𝑒2 {Φ}

WpBindPlusR

wp 𝑒2 {𝑣2. wp 𝑣1 +̂ 𝑣2 {Φ}}
wp 𝑣1 +̂ 𝑒2 {Φ}

WpPlus

Φ(𝑧1 + 𝑧2)
wp 𝑧1 +̂ 𝑧2 {Φ}

WpApp

wp 𝑒 [𝑣/𝑥] {Φ}
wp (𝜆𝑥 . 𝑒) (𝑣) {Φ}

WpIfTrue

wp 𝑒1 {Φ} 𝑧 ≠ 0

wp if 𝑧 then 𝑒1 else 𝑒2 {Φ}

WpIfFalse

wp 𝑒2 {Φ}
wp if 0 then 𝑒1 else 𝑒2 {Φ}

Fig. 2. Excerpt of the program logic for the 𝜆Z.

Program logic. To reason about programs in 𝜆Z, wewill define a program logic. As the framework

for our program logic we use Iris [21], a versatile separation logic that comes with a good foundation

of reusable reasoning principles and has already been used as the basis for numerous program

logics [20, 6, 33, 32, 16, 28]. Following the usual approach in Iris, we use a weakest precondition
connective as the core of our program logic. A more traditional Hoare-style program logic can be

easily defined on top of this by setting {𝑃} 𝑒 {𝑄} := 𝑃 −∗ wp 𝑒 {𝑄}; the typical rules can be derived.

Concretely, wp 𝑒 {Φ} says that in the current state (which can be constrained by assumptions

in the logical context), every execution of 𝑒 is well-behaved and the returned value 𝑣 satisfies the

postcondition Φ(𝑣). We obtain the expected rules for wp, as shown in Figure 2:2 we have the rule

of consequence and the specific rules for each language construct. For instance, WpPlus says that

𝑧1 +̂ 𝑧2 satisfies postcondition Φ whenever the corresponding mathematical term 𝑧1 + 𝑧2 satisfies Φ.
WpBindPlusL is a “bind” rule that recurses into the program structure; it says that to reason about

𝑒1 +̂ 𝑒2, we can first reason about 𝑒1. Every value 𝑣1 that 𝑒1 can evaluate to must then satisfy the

property that any evaluation of 𝑣1 +̂ 𝑒2 satisfies the desired postcondition. WpBindPlusR does the

same for the right-hand operand (but this rule only applies if the left-hand operand is a value,

indicating a left-to-right evaluation order). We omit similar rules for application and if-expressions.

(The frame rule WpFrame will only become relevant when we get to reasoning about state.)

These rules are entirely standard. The key idea of our approach lies in how wp is defined: instead

of defining a new wp for each language, we want to enable reuse across languages. Therefore,

we introduce a new general-purpose weakest precondition connective for arbitrary ITrees: given
𝑡 : itree 𝐸 𝑅, we define wpi𝐻 𝑡 {Φ} as the weakest precondition that ensures 𝑡 terminates with a

return value that satisfies postcondition Φ. The definition takes as input a logical effect handler (or
just handler) 𝐻 which provides specifications for the events in 𝐸. On top of this, we can define the

weakest precondition for 𝜆Z by choosing a suitable handler LangHZ and then setting:

wp 𝑒 {Φ} := wpiLangHZ
J𝑒K {Φ}

The reason this is useful is that wpi satisfies the rules in Figure 3—they come “for free”, without

us having to do any language-specific work. Aside from the rule of consequence, we have rules

for the bind and return operators of the ITree monad, as well as WpiEutt which states that wpi

2Note that—following the standard Iris approach—these rules are (Iris-level) theorems about the definition of wp𝑒 {Φ}
found below. (In particular, wp𝑒 {Φ} is not inductively defined using these rules as would be typical outside of Iris).
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WpiConseqence

∀𝑟 . Φ(𝑟 ) ⊢ Ψ(𝑟 ) wpi𝐻 𝑡 {Φ}
wpi𝐻 𝑡 {Ψ}

WpiFrame

𝑃 ∗ wpi𝐻 𝑡 {Φ}
wpi𝐻 𝑡 {𝑣 . 𝑃 ∗ Φ(𝑣)}

WpiEutt

𝑡1 ≈ 𝑡2
wpi𝐻 𝑡1 {Φ} ⊣⊢ wpi𝐻 𝑡2 {Φ}

WpiBind

wpi𝐻 𝑡 {𝑥 . wpi𝐻 𝑘 (𝑥) {Φ}}
wpi𝐻 𝑥 ← 𝑡 ;𝑘 (𝑥) {Φ}

WpiRet

Φ(𝑟 )
wpi𝐻 Ret(𝑟 ) {Φ}

Fig. 3. Basic, generic proof rules for weakest preconditions.

is compatible with ≈ (“equivalence up to 𝜏”). This is needed to unfold general recursive ITree

definitions, such as our J𝑒K, which can only be unfolded up to ≈, not up to full definitional equality.

To complete this definition, we need to define the handler LangHZ. The only event we have to

worry about for now is fail, which comes with a handler FailH that assigns fail the precondition
False. Accordingly, fail can never be called in a verified program. (We will see in §3.2 how exactly

handlers capture event specifications.) We can thus pick LangHZ := FailH.

The rules in Figure 2 for our weakest precondition wp are now easily derived from the rules in

Figure 3 for the underlying ITree weakest precondition wpi. We consider two examples.

Proof of WpIfFalse. By definition of J_K andmonadic laws, we have Jif 0 then 𝑒1 else 𝑒2K ≈
J𝑒2K. Using WpiEutt, this reduces our goal to wp 𝑒2 {Φ}, and we are done immediately. □

Proof of WpBindPlusL. We have J𝑒1 + 𝑒2K ≈ 𝑣1 ← J𝑒1K;𝑘 (𝑣1) for 𝑘 a notational shorthand for

the continuation. Using WpiEutt and WpiBind, our goal thus turns into wp 𝑒1 {𝑣1. wp𝑘 (𝑣1) {Φ}}.
By monadic laws, J𝑣1 + 𝑒2K ≈ 𝑣 ′1 ← Ret(𝑣1);𝑘 (𝑣 ′1) ≈ 𝑘 (𝑣1), and we are done by WpiEutt. □

These proofs demonstrate how the language-agnostic rules for wpi greatly simplify the typically

tedious task of establishing proof rules for every single language construct.

2.2 2nd Effect: Mutable State (𝜆Z,!)
To demonstrate that we can obtain a language and program logic by composing reusable pieces,

we extend our language with another feature, a higher-order heap:

𝑣 ∈ valF · · · | ℓ (ℓ ∈ N) 𝑒 ∈ exprF · · · | ref(𝑒) | ! 𝑒 | 𝑒1 ← 𝑒2

Here, ℓ is a heap location. The term ref(𝑒) allocates a heap cell with content 𝑒 , ! 𝑒 loads the contents

at heap location 𝑒 , and 𝑒1 ← 𝑒2 stores 𝑒2 at heap location 𝑒1.

In the setting of operational semantics, making such an extension to the language would require

invasive surgery to the semantics: even the type of the stepping relation changes because it has to

thread through the global state. However, as we shall see, with ITree-based semantics and program

logics, we do not have to labor hard for an extension like this.

In our setting, this extension is provided via the HeapE𝑉 event type for a value type 𝑉 , which

admits the following operations. (HeapE𝑉 is defined formally in §3.3.)

(1) alloc : 𝑉 → itree HeapE𝑉 N which allocates a new heap cell,

(2) load : N→ itree HeapE𝑉 (option𝑉 ) which loads the value in a heap cell (returning none if
it is empty), and

(3) store : N→ 𝑉 → itree HeapE𝑉 (option𝑉 ) which stores a value in a heap cell and returns

the old value (or none if it was empty).
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WpRef

wp ref(𝑣) {𝑣 ′ . ∃ℓ . 𝑣 ′ = ℓ ∗ ℓ ↦→ 𝑣}

WpLoad

ℓ ↦→ 𝑣

wp ! ℓ {𝑣 ′ . 𝑣 = 𝑣 ′ ∗ ℓ ↦→ 𝑣}

WpStore

ℓ ↦→ 𝑣

wp ℓ ← 𝑣 ′ {𝑤.𝑤 = 𝑣 ∗ ℓ ↦→ 𝑣 ′}

Fig. 4. Program logic for 𝜆Z,!.

WpiAlloc

wpiHeapH𝑉
alloc(𝑣) {ℓ . ℓ ↦→ 𝑣}

WpiLoad

ℓ ↦→ 𝑣

wpiHeapH𝑉
load(ℓ) {𝑣 ′ . 𝑣 = 𝑣 ′ ∗ ℓ ↦→ 𝑣}

WpiStore

ℓ ↦→ 𝑣

wpiHeapH𝑉
store(ℓ, 𝑣 ′) {𝑤.𝑤 = 𝑣 ∗ ℓ ↦→ 𝑣 ′}

Fig. 5. Proof rules for wpiHeapH𝑉
.

The event type for 𝜆Z,! is defined as LangEZ,! := FailE ⊕ HeapEval, using the sum operator (⊕) on
event types. (We use blue color to indicate changes to previous definitions.)

We extend the denotation J𝑒K : itree LangEZ,! val to account for the new operations:

Jref(𝑒)K := 𝑣 ← J𝑒K; ℓ ← alloc(𝑣);Ret(ℓ)
J! 𝑒K := 𝑣 ← J𝑒K; ℓ ← to_loc(𝑣);𝑤 ← load(ℓ); unwrap(𝑤)

J𝑒1 ← 𝑒2K := 𝑣1 ← J𝑒1K; 𝑣2 ← J𝑒2K; ℓ ← to_loc(𝑣1);𝑤 ← store(ℓ, 𝑣2); unwrap(𝑤)
to_loc(𝑣) :=match 𝑣 with ℓ =⇒ Ret(ℓ) | _ =⇒ fail end

unwrap(𝑤) :=match𝑤 with some(𝑣) =⇒ Ret(𝑣) | none =⇒ fail end

Program logic. Our library also provides a handler HeapH𝑉 for HeapE𝑉 . To obtain a program

logic for the extended language, we can combine the handler for FailE and for HeapEval into a

handler LangHZ,! := FailH ⊕ HeapHval, and update wp to use this new handler.

The extended logic continues to satisfy all the rules in Figure 2—all proofs continue to proceed

as before. In addition, we obtain the rules for the heap primitives as shown in Figure 4. These rules

are direct consequences of the rules for the HeapE operations displayed in Figure 5 (which lift to

wpiLangHZ,!
as we will see in §3.2). Some technicalities are omitted from the latter rules (consult §3.3).

2.3 3rd Effect: Non-Determinism (𝜆Z,!,pick)
The next extension we consider is non-determinism. Namely, we extend the language with an

operation to pick an arbitrary integer:

𝑒 ∈ exprF · · · | pick_int()
This introduces one new effect into the language: DemonicE, modeling demonic non-determinism.

This event type contains an event choice𝐴 with answer type 𝐴 for each inhabited3 type 𝑎 : 𝐴.

Accordingly, we define LangEZ,!,pick := FailE ⊕ HeapEval ⊕ DemonicE and extend J_K:

Jpick_int()K := 𝑧 ← choiceZ;Ret(𝑧)

Program logic. Our library provides a handler DemonicH for DemonicE, with a specification

for choice𝐴 as shown in Figure 6. With this handler in our quiver, we can take LangHZ,!,pick :=

FailH ⊕ HeapHval ⊕ DemonicH. Simple as that, we get an extended program logic wp 𝑒 {Φ}.
Again, the wp rules in Figure 2 and Figure 4 can be carried over. There is also an additional proof

3We will explain the restriction to inhabited types in §2.4.
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WpiDemonic

∀𝑟 ∈ 𝐴. Φ(𝑟 )
wpiDemonicH choice𝐴 {Φ}

WpPickInt

∀𝑧. Φ(𝑧)
wp pick_int() {Φ}

Fig. 6. Proof rules for wpiDemonicH and 𝜆Z,!,pick.

rule for choice𝐴, WpPickInt, which is a direct consequence of WpiDemonic and the general laws for

wpi that we have already seen in action above.

2.4 Adequacy
We saw how to build up wp 𝑒 {Φ} in a modular fashion. But what guarantees do we actually get

from proving wp 𝑒 {Φ}? Intuitively, the answer should be “every execution of 𝑒 is well-behaved and

the returned value satisfies Φ”. This is formalized by an adequacy (or soundness) theorem for the

program logic. To make this precise, we have to define what an execution of a 𝜆Z,!,pick program is

and when it is well-behaved. For our example language, “well-behaved” will mean “terminates and

does not reach fail”. (In §6.1, we will also explain how our approach can in fact deal with partial

correctness where non-terminating programs are also considered “well-behaved”.)

Execution via relational interpretation. A large part of what makes up an “execution” is

already defined by J_K, expressed as a shallow embedding in themeta-logic. However, this denotation

does not ascribe a computational meaning to events.

Previous work on ITrees used the concept of interpretation to give meaning to events. These

interpretations are based on the idea of an effect handler turning events into monadic operations,

and then “lifting” that transformation to an entire ITree.

Using this approach, one can obtain an interpretation function for FailE events:

𝑓FailE : itree (FailE ⊕ 𝐸) 𝑅 → itree 𝐸 (val ∪ {⊥fail})
𝑓FailE transforms an ITree by removing the FailE events and returning⊥fail whenever fail is encoun-
tered. By applying this function to J𝑒K, we obtain 𝑡1 : itree (HeapEval ⊕ DemonicE) (val ∪ {⊥fail}).

Next, we can interpretHeapE𝑉 events by threading the state through the computation, starting at

the empty heap. This defines for any𝑉 , 𝐸, 𝑅 an interpretation function with the following signature:

𝑓HeapE : itree (HeapE𝑉 ⊕ 𝐸) 𝑅 → itree 𝐸 𝑅

(To simplify the signature, this interpretation function discards the final state.) Applying this to 𝑡1,

we thus obtain 𝑡2 : itree DemonicE (val ∪ {⊥fail}).
This leaves us with executing the DemonicE events. Interpreting non-determinism with an

interpretation function fails to capture that there is not just a single way to execute choice𝐴: the
entire point is that there is a possible execution for each 𝑎 ∈ 𝐴! This is where we use the concept
of a propositional interpretation [49]. Instead of a function, we give an interpretation relation to

characterize possible executions:

↓DemonicE: itree (DemonicE ⊕ 𝐸) 𝑅 → itree 𝐸 𝑅 → Prop

Concretely, ↓DemonicE is defined as a coinductive relation according to the rules in Figure 7. The

most interesting rule is DemonicIrelChoice: It says that to construct the interpretation for a de-

monic choice event over 𝐴, one has to pick an 𝑎 : 𝐴 and then construct the interpretation for

the continuation 𝑘 (𝑎). The rules DemonicIrelRet, DemonicIrelTau, and DemonicIrelVis simply for-

ward the actions that are not related to demonic choice. Thus, the different ways to construct

the interpretation correspond to the different demonic choices in the ITree while leaving all
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DemonicIrelChoice

𝑘 (𝑎) ↓DemonicE 𝑡
′

Vis𝐴 (choice𝐴, 𝑘) ↓ Tau(𝑡 ′)
DemonicIrelRet

Ret(𝑟 ) ↓DemonicE Ret(𝑟 )

DemonicIrelTau

𝑡 ↓DemonicE 𝑡
′

Tau(𝑡) ↓DemonicE Tau(𝑡 ′)

DemonicIrelVis

𝜖 ∉ DemonicE ∀𝑎. 𝑘 (𝑎) ↓DemonicE 𝑘
′ (𝑎)

Vis𝐴 (𝜖, 𝑘) ↓DemonicE Vis𝐴 (𝜖, 𝑘 ′)

Fig. 7. Definition of ↓DemonicE.

other events unchanged. Using ↓DemonicE, we can turn 𝑡2 into a set of possible interpretations

𝑡 ′ : itree ∅ (val ∪ {⊥fail}).
At this point, there are no more events left: 𝑡 ′ is either an infinite loop, or it terminates with

some value in val ∪ {⊥fail}. We can hence say that 𝑡 ′ is a possible execution of the original ITree

J𝑒K and therefore of 𝑒 .

For notational consistency, we view the interpretation functions 𝑓FailE and 𝑓HeapE as relations as

well (i.e., , 𝑡 ↓𝐸 𝑡 ′ ⇐⇒ 𝑓𝐸 (𝑡) = 𝑡 ′). This lets us define the executions of 𝑡 : itree LangEZ,!,pick 𝑅 as

the set of 𝑡 ′ : itree ∅ (𝑅 ∪ {⊥fail}) that satisfy the following composite interpretation relation:

𝑡 ↓Z,!,pick 𝑡 ′ := ∃𝑡1, 𝑡2. 𝑡 ↓FailE 𝑡1 ↓HeapE 𝑡2 ↓DemonicE 𝑡
′

Proving adequacy effect-by-effect. Having defined our notion of execution, we turn towards

what wp has to say about them. As with everything else, we follow a modular approach. We show

adequacy of the underlying wpi for one effect type at a time, and then compose those reusable

results to obtain adequacy for wp.
The adequacy theorems for the effects we have seen so far are stated in Figure 8. They all take

basically the same shape: if 𝑡 ↓ 𝑡 ′, then wpi 𝑡 {Φ} implies wpi 𝑡 ′ {Φ′}, showing that every property

provable via wpi is preserved under all possible interpretations. The postcondition Φ′ remains

entirely unchanged for HeapAdeqate and DemonicAdeqate, but for FailAdeqate we have to

adjust the postcondition to say that the program will never fail. Finally, EmptyAdeqate says that

proving wpi for an ITree with no effects establishes total correctness: the ITree is equivalent to one

that immediately returns a return value 𝑟 that satisfies the postcondition. Note that the conclusion

of these rules is still an Iris proposition, but in the case that Φ is a pure, meta-level predicate, we

can use the soundness theorem of Iris to obtain a theorem that lives entirely in the meta-logic

without having to trust Iris.

We can compose these adequacy theorems to show that each of the 3 stages (𝑡1, 𝑡2, 𝑡 ′) of an
execution J𝑒K ↓Z,!,pick 𝑡 ′ preserves the weakest precondition:

J𝑒K : itree (FailE ⊕ HeapEval ⊕ DemonicE) val wpi J𝑒K {Φ}

𝑡1 : itree (HeapEval ⊕ DemonicE) (val ∪ {⊥fail}) wpi 𝑡1 {𝑣 . 𝑣 ≠ ⊥fail ∗ Φ(𝑣)}

𝑡2 : itree DemonicE (val ∪ {⊥fail}) wpi 𝑡2 {𝑣 . 𝑣 ≠ ⊥fail ∗ Φ(𝑣)}

𝑡 ′ ≈ Ret(𝑣) : itree ∅ (val ∪ {⊥fail}) 𝑣 ≠ ⊥fail ∗ Φ(𝑣)

↓FailE ∗

↓HeapE
∗

↓DemonicE
∗
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FailAdeqate

𝑡 ↓FailE 𝑡 ′ wpiFailH⊕𝐻 𝑡 {Φ}
wpi𝐻 𝑡

′ {𝑣 . 𝑣 ≠ ⊥fail ∗ Φ(𝑣)}

DemonicAdeqate

𝑡 ↓DemonicE 𝑡
′ wpiDemonicH⊕𝐻 𝑡 {Φ}
wpi𝐻 𝑡

′ {Φ}

HeapAdeqate

𝑡 ↓HeapE 𝑡
′ wpiHeapH𝑉 ⊕𝐻 𝑡 {Φ}
wpi𝐻 𝑡

′ {Φ}

EmptyAdeqate

wpi∅ 𝑡 {Φ}
∃𝑟 . 𝑡 ≈ Ret(𝑟 ) ∗ Φ(𝑟 )

LangAdeqate

J𝑒K ↓Z,!,pick 𝑡 ′ wp 𝑒 {Φ}
∃𝑟 ≠ ⊥fail . 𝑡 ′ ≈ Ret(𝑟 ) ∗ Φ(𝑟 )

Fig. 8. A selection of adequacy theorems.

This chain is summarized by the adequacy theorem LangAdeqate for our program logic, formalizing

the intuitive reading of wp 𝑒 {Φ} from the beginning of this subsection.

This proof is entirely compositional and factors into intermediate stages, each focusing on one

effect at a time. Just like we constructed the program logic from smaller building blocks, this confers

an advantage of reusability: if one wants to derive a program logic for a language with more kinds

of effects, one can define these new effects and prove adequacy theorems for them, and then use

these together with the reusable components our library provides without having to monolithically

reprove the entire logic to be adequate.

Interpreter soundness proof. As already mentioned, ITrees come with a concept of interpreta-

tion functions that make events executable. For non-deterministic choice, there is more than one

possible execution, and thus we considered not an interpretation function but an interpretation

relation. However, it is still possible to define an interpretation function 𝑓DemonicE that computes

a legal instantiation of demonic choice: 𝑡 ↓DemonicE 𝑓DemonicE (𝑡). This crucially relies on the con-

straint that choice𝐴 can only be used for inhabited types 𝐴. Following standard ITree patterns, we

can compose these functions for all our effects into a single end-to-end interpreter 𝑓Z,!,pick that

can execute 𝜆Z,!,pick programs. Thanks to the ITree-based formulation of LangAdeqate, one can

easily show the following soundness property: if ⊢ wp 𝑒 {Φ} (where Φ is a pure proposition), the

interpreter applied to 𝑒 will terminate in a value 𝑣 ≠ ⊥fail satisfying Φ(𝑣). This guarantees not only
safety but also termination for our interpreter.

3 Weakest Preconditions for ITrees and Logical Effect Handlers
We have seen the high-level idea of how a language-specific program logic can be defined in terms

of a general weakest precondition connective for ITrees, wpi, alongside a menu of reusable effect

libraries. We also saw some examples of such effect libraries. In this section, we show how wpi and
these effect libraries are defined. We start with a definition of wpi in §3.1 (although this definition

will later be extended in §4). We show how to define logical effect handlers with the simple examples

of FailH and DemonicH (§3.2), and then discuss the more complicated handler HeapH (§3.3).

3.1 Defining wpi𝐻
We can now define the weakest precondition wpi𝐻 𝑡 {Φ} for ITrees at the core of our theory:

wpi𝐻 𝑡 {Φ} := |⇛


Φ(𝑟 ) if 𝑡 = Ret(𝑟 )
wpi𝐻 𝑡

′ {Φ} if 𝑡 = Tau(𝑡 ′)
𝐻𝐴 (𝜖, (𝜆𝑎. wpi𝐻 𝑘 (𝑎) {Φ})) if 𝑡 = Vis𝐴 (𝜖, 𝑘)

The first two cases are straightforward: Ret(𝑟 ) asserts the postcondition Φ and Tau(𝑡 ′) continues
with 𝑡 ′. The more interesting case is the one for events, Vis𝐴 (𝜖, 𝑘), which is deferred to a logical effect
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handler :𝐻 (𝜖,Ψ) determines the verification condition for each event 𝜖 in 𝐸 and logical continuation

Ψ in predicate transformer style. The logical continuation will be the weakest precondition for

the ITree continuation 𝑘 . If the event 𝜖 with answer type 𝐴 has precondition 𝑃 and postcondition

𝑄 (𝑎) for answer 𝑎, we would set 𝐻 (𝜖,Ψ) := 𝑃 ∗ (∀𝑎 : 𝐴. 𝑄 (𝑎) −∗ Ψ(𝑎)). In other words, triggering

the event requires first proving 𝑃 and then proving the logical continuation assuming 𝑄 . (We

will discuss handlers in more detail in the next subsection. We will also adapt wpi to support

concurrency in §4.)

All of this is wrapped in the Iris update modality |⇛ [21]. Intuitively, the update modality allows

one to perform standard Iris reasoning for updating ghost state when proving a wpi.
All the rules for wpi𝐻 in Figure 3 (on page 6) hold for free, or rather, for cheap: we only need a

single property of 𝐻 . Namely, we require that handlers satisfy monotonicity. For all events 𝜖 with
answer type 𝐴, and all Φ,Ψ : 𝐴→ iProp, the following must hold:

(∀𝑎. Φ(𝑎) −∗ Ψ(𝑎)) −∗ 𝐻𝐴 (𝜖,Φ) −∗ 𝐻𝐴 (𝜖,Ψ) (HandlerMono)

This property trivially holds for all handlers presented in this paper.

Thanks to this monotonicity property, the recursive definition of wpi𝐻 is well-formed by taking

the least fixpoint. Choosing the least fixpoint as opposed the greatest fixpoint means that (by

default) our weakest precondition is termination sensitive or total, that is, it implies termination

of programs. However, we shall see later in §6.1 how this definition also subsumes termination

insensitive reasoning, thus uniting both total and partial verification in one, common framework.

3.2 Logical Effect Handlers: Failure, Non-Deterministic Choice
We now have a more in-depth look at handlers 𝐻 . Handlers codify what one needs to prove when

verifying an event, i.e., we have:
𝐻 (𝜖,Φ) ⊢ wpi𝐻 𝜖 {Φ}

(On the right hand side, the event 𝜖 is implicitly coerced to an ITree as described in §2.1.)

We define a corresponding handler for each event type. For example, for the FailE andDemonicE
events (introduced in §2.1 and §2.3), the handlers take the following shape:

FailH∅ (fail,Φ) := False DemonicH𝐴 (choice𝐴,Φ) := ∀𝑎. Φ(𝑎)
FailE has a single event fail that we want to prove never happens. We can encode this by defining

FailH(fail,Φ) as False and thus ensuring that we can never provewpi𝐻 fail {Φ}. For demonic choice

over a type 𝐴 (given by the choice𝐴 event), we want to verify that the program is correct for all
possible choices. We encode this by using a universal quantifier in the handler DemonicH. From

this, we obtain the rule WpiDemonic in §2.3.

Composing handlers. To define a handler for a programming language with lots of different

effects, we compose handlers for the individual effects. If 𝐻1 is a handler for 𝐸1 and 𝐻2 is a handler

for 𝐸2, we can define a handler 𝐻1 ⊕ 𝐻2 for the sum 𝐸1 ⊕ 𝐸2 in the obvious way.

Subsumption. A program using only a subset of the available effects can be verified in the

corresponding fragment of the program logic. Suppose 𝐻 is a handler for 𝐸 and 𝐻 ′ is a handler for
𝐸′ such that 𝐸′ is contained in 𝐸. We write 𝐻 ′ ⊆ 𝐻 if 𝐻 (𝜖,Φ) ⊣⊢ 𝐻 ′ (𝜖,Φ) for every event 𝜖 in 𝐸′

and every Φ. This gives rise to the rule:

WpiSubsume

𝐸′ ⊆ 𝐸 𝐻 ′ ⊆ 𝐻 𝑡 : itree 𝐸′ 𝑅

wpi𝐻 𝑡 {Φ} ⊣⊢ wpi𝐻 ′ 𝑡 {Φ}
The most salient examples are𝐻1 ⊆ 𝐻1⊕𝐻2 and𝐻2 ⊆ 𝐻1⊕𝐻2 for any handlers𝐻1, 𝐻2. For instance,

proof rules from wpiDemonicH thus lift to proof rules for wpiDemonicH⊕··· .
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3.3 Handling Mutable State
In §2.2, we introduced theHeapE𝑉 event type for mutable heaps. This is in fact a derived construc-

tion, based on the StateES event type for global state of type S.HeapE𝑉 is defined as StateEN
fin−⇀𝑉

.

The StateES event type is a standard ITree construction. It consists of two events: get, with
answer type S, returns the current state; put(𝑠), with answer type (), overwrites the current state.

The handler for StateES follows the usual Iris recipe for dealing with global state: it is parame-

terized by a state interpretation 𝑆 : S → iProp which is used to relate the physical state to Iris’s

logical state. Intuitively, 𝑆 (𝑠) says “we own the state and it is currently 𝑠”.

Based on the state interpretation, we define the state handler as follows:

StateH𝑆
S (get,Φ) := ∀𝑠 . 𝑆 (𝑠) −∗ |⇛ (𝑆 (𝑠) ∗ Φ(𝑠))

StateH𝑆
S (put(𝑠

′),Φ) := ∀𝑠 . 𝑆 (𝑠) −∗ |⇛ (𝑆 (𝑠′) ∗ Φ(𝑠))

The handler for put says that to prove wpiStateH𝑆
S ;E

put(𝑠′) {Φ}, we can briefly take ownership 𝑆 (𝑠)
of the old state, and then we have to give back ownership 𝑆 (𝑠′) of the new state and establish Φ(𝑠).
(We will get back to the update modality |⇛ shortly.) The handler for get is similar, except that the

state interpretation has to be given back unchanged.

Building HeapE on top of StateE. On top of get and put, we can define heap operations:

load(ℓ) := 𝜎 ← get;Ret(𝜎 (ℓ)) : itree HeapE𝑉 (option𝑉 )
store(ℓ, 𝑣) := 𝜎 ← get; put(𝜎 [ℓ := some(𝑣)]);Ret(𝜎 (ℓ)) : itree HeapE𝑉 (option𝑉 )
alloc(𝑣) := 𝜎 ← get; ℓ := find_free(𝜎); put(𝜎 [ℓ := some(𝑣)]);Ret(ℓ) : itree HeapE𝑉 N

To derive the rules for these constructs in Figure 5 (on page 7) from the basic rules for StateE, we
follow basically the same recipe as the standard Iris program logic [24]: we set up ghost state that

tracks the current contents of physical state in 𝑆 (this is why we need an update modality in the

state handler) and use the same ghost state to give meaning to ℓ ↦→ 𝑣 . The one technical wrinkle is

that we have to put a third view of this ghost state into a shared invariant to permit the proof to

“remember” facts about the global state in between invocations of state operations.4 The use of an

invariant gives rise to a technical side-condition, requiring the namespace of this invariant to be in

the mask for each heap operation. Up to such venial side-conditions, this construction lets us then

derive the desired rules in Figure 5.

Similarly, the interpretation relation ↓HeapE and the adequacy theorem HeapAdeqate in Figure 8

(on page 10) can be derived from a general interpretation relation and associated adequacy theorem

for StateH𝑆
S , which we omit for lack of space.

4 Extension: Concurrency
Having pinned down basic features such as program failure and state, we turn our attention

to extending the theory with a more advanced feature: concurrency. Modeling and reasoning

about concurrency is yet another reusable component in our theory. However, it is sufficiently

non-standard that we have to generalize our notion of wpi to accommodate the new kinds of

control-flow that can arise with concurrency. To demonstrate this, let us return to 𝜆Z,!,pick from §2

and consider another language extension, arriving at 𝜆Z,!,pick,spawn. The syntax becomes:

𝑒 ∈ exprF · · · | spawn {𝑒}

4For the Iris experts: we use the “authoritative” construction. Its authoritative part supports fractional permissions, so we

can put one half in 𝑆 and one half in a global invariant. The points-to connective is defined, as usual, as a fragment of the

same ghost state. The invariant itself is then also made part of 𝑆 so that it does not have to be explicitly threaded through.
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spawn {𝑒} represents spawning a new thread executing 𝑒 .

4.1 Denoting a Concurrent Language into ITrees
We saw in §2.3 how to denote 𝜆Z,!,pick into ITrees. We now show how to denote the extended

𝜆Z,!,pick,spawn into ITrees. Since we are adding a new effect (concurrency), we will need to extend

the set of events LangE:

LangEZ,!,pick,spawn := ConcE ⊕ FailE ⊕ HeapEval ⊕ DemonicE

While our language has preemtive concurrency, we model it using cooperative concurrency on the

level of ITrees. Specifically, the event type ConcE unlocks the following new operations:

(1) spawn : itree LangEZ,!,pick,spawn () → itree LangEZ,!,pick,spawn () spawns a new thread

executing some ITree.

(2) yield : itree LangEZ,!,pick,spawn () yields control to an arbitrary thread in the thread pool

(including possibly the current thread).

With this, we can extend our semantic interpretation with a denotation for spawn (using 0 as return
value since our language does not have a “unit” value):

Jspawn {𝑒}K := spawn(J𝑒K;Ret(()));Ret(0)

But this is not enough. We must also augment the denotation of other program terms to insert a

yield at any point when control may be passed to another thread. It is necessary to exercise some

care in doing so to ensure that we model the preemptive semantics in the intended way:

(1) We want to yield “between” any two computation steps. For instance, when evaluating ! ℓ+ ! ℓ ,
it is crucial that we yield in between the two loads.

(2) However, some expressions such as ℓ ← 𝑣 are atomic which means they should execute “in a

single step” without interleaving with other threads. We do not want yields in the denotations

of such expressions.

(3) Expressions such as 𝑒1 (𝑒2) and if 𝑒1 then 𝑒2 else 𝑒3 that evaluate by first transforming

to another expression 𝑒′ should yield before continuing with computing 𝑒′. For example,

𝛽-reductions may not terminate and we do not want one thread to block the thread pool.

An excerpt of the placement of yields in J_K according to these considerations is displayed in Figure 9.
To honor (1), we define a notational shorthand J𝑒Kyield that places a yield after the evaluation of 𝑒 ; we
use this to evaluate the subexpressions of an expression (except for the branches of an if-expression

and the argument to spawn {_}, which are not eagerly evaluated). However, to honor (2), we make

use of a helper function yield_if_not_val(𝑒) which exhibits a yield only if the expression 𝑒 is not a

value. Finally, to honor (3), we ensure that denotations J𝑒K that end on a recursive instance J𝑒′K
have a yield_if_not_val(𝑒′) before this instance to mark the computational step from 𝑒 to 𝑒′.

Example: Compare-and-store. To explain why we are using cooperative concurrency in the

denotation, we consider adding an atomic compare-and-store operation to 𝜆Z,!,pick,spawn:

𝑒 ∈ exprF · · · | CAS(𝑒, 𝑒1, 𝑒2)

CAS(ℓ, 𝑣1, 𝑣2) loads the current value from ℓ , compares it to 𝑣1, and stores 𝑣2 at ℓ if the two values

are equal. Crucially, this operation should happen in a single atomic step: No other thread should

execute during the load-compare-store sequence performed by the CAS. With our yield-based
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yield_if_not_val(𝑒) :=match 𝑒 with 𝑣 =⇒ Ret(()) | _ =⇒ yield end

J𝑒Kyield := 𝑣 ← J𝑒K; yield_if_not_val(𝑒);Ret(𝑣)
J𝑒1 ← 𝑒2K := 𝑣1 ← J𝑒1Kyield; 𝑣2 ← J𝑒2Kyield; ℓ ← to_loc(𝑣2);

𝑤 ← store(ℓ, 𝑣1); unwrap(𝑤)
J𝑒1 (𝑒2)K := 𝑣1 ← J𝑒1Kyield; 𝑣2 ← J𝑒2Kyield; (𝑥, 𝑒) ← to_lam(𝑣1);

yield_if_not_val(𝑒 [𝑣2/𝑥]); J𝑒 [𝑣2/𝑥]K
Jif 𝑒1 then 𝑒2 else 𝑒3K := 𝑣1 ← J𝑒1Kyield; 𝑧1 ← to_int(𝑣1);

if 𝑧1 ≠ 0 then (yield_if_not_val(𝑒2);J𝑒2K)
else (yield_if_not_val(𝑒3);J𝑒3K)

Fig. 9. Excerpt of the placement of yields.

cooperative concurrency, we can express the desired semantics of CAS as the following ITree:

JCAS(𝑒, 𝑒1, 𝑒2)K := 𝑣1 ← J𝑒1Kyield; 𝑣2 ← J𝑒2Kyield; 𝑣 ← J𝑒Kyield; ℓ ← to_loc(𝑣);
𝑣 ′
?
← load(ℓ); 𝑣 ′ ← unwrap(𝑣 ′

?
);

if 𝑣1 = 𝑣
′
then (store(ℓ, 𝑣2);Ret(true)) else Ret(false)

First, this ITree evaluates the subexpressions of CAS. Then the load-compare-store sequence is

expressed using the basic load and store operations provided by the HeapE event type. We can

reuse their specifications (Figure 5) when establishing proof rules such as those for CAS:

HlWpCasSuc

ℓ ↦→ 𝑣

wpE CAS(ℓ, 𝑣,𝑤) {𝑣 ′ . 𝑣 ′ = true ∗ ℓ ↦→ 𝑤}

HlWpCasFail

𝑣 ≠ 𝑣 ′ ℓ ↦→ 𝑣

wpE CAS(ℓ, 𝑣 ′,𝑤) {𝑣 ′ . 𝑣 ′ = false ∗ ℓ ↦→ 𝑣}

This is in stark contrast to an operational semantics, where the proof of the CAS rules typically has

to duplicate the reasoning performed in the rules for loads and stores. In an attempt to overcome

this, one could try to define CAS inside the language instead of having it as a primitive operation:

CAS(𝑥, 𝑎, 𝑏) := if 𝑎 = !𝑥 then (𝑥 ← 𝑏; true) else false

However, this is not equivalent to the intended definition: CAS is supposed to be atomic whereas this

definition is not; other threads could take steps between the load and the store. With cooperative

concurrency, on the other hand, we have a level of abstractions below that of our language where

we are able to define the helper functions load and store with no yields so that no additional

interleavings are introduced. This reuse simplifies both the language semantics and the correctness

proof for the program logic.

4.2 Program Logic for Concurrent Programs
With this denotation at our disposal, we can begin to build a program logic for 𝜆Z,!,pick,spawn in the

style of §2. This requires generalizing wpi, so we first talk about how Iris deals with concurrency.

Intermezzo: Concurrency in Iris. As usual for concurrent separation logics [30], the case of

disjoint concurrency is handled via a separating conjunction: if the forked-off thread has precondi-

tion 𝑃 , then the parent thread needs to prove 𝑃 ∗𝑄 where 𝑃 is handed to the forked-off thread and

only 𝑄 remains in the parent thread.
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WpiSpawn

wpiConcH⊕𝐻 ;⊤ 𝑡 {True} ∗ Φ(())
wpiConcH⊕𝐻 ;E spawn(𝑡) {Φ}

WpiYield

Φ(())
wpiConcH;⊤ yield {Φ}

Fig. 10. Weakest precondition proof rules for ITrees with concurrency.

But what if the two threads are sharing state? The answer to that is to use an invariant: the
logical assertion 𝑃

N
expresses that 𝑃 is permanently maintained as an invariant on the shared

state. Threads can get access to 𝑃 atomically, for an instant in time, with a proof rule like this:5

𝑃 −∗ wpE\N 𝑒 {𝑟 . 𝑃 ∗ Φ(𝑟 )} 𝑃
N N ⊆ E 𝑒 is atomic

wpE 𝑒 {Φ}

Ignoring the E and N for now, this rule expresses that to prove correctness of 𝑒 , we may instead

prove 𝑃 −∗ · · · , i.e., 𝑃 is made available as an extra assumption. This proof can temporarily break the

invariant, but when 𝑒 finishes execution, we have to re-establish 𝑃 , thus ensuring that the invariant

is maintained again. Crucially, since 𝑒 is an atomic expression, no other thread can notice that the

invariants was temporarily broken—it always holds between any two atomic steps of the program.

However, atomicity alone is not sufficient to ensure soundness of this rule. The other potential

problem is reentrancy: if the rule could be used twice on the same invariant, the program would

gain access to 𝑃 ∗𝑃 , and that would be unsound. This is where themask E comes in: every invariant

lives in a namespace N , and the weakest precondition connective keeps track of which invariants

are still available in its mask. To open an invariant, the entire namespace must be in the mask

(N ⊆ E), and it is subsequently removed from the mask (𝑒 is verified with the reduced mask E \N ).

wpi rules for ConcE. To reason about concurrent programswithwpi, we introducewpi𝐻 ;E 𝑡 {Φ}
which carries a mask to indicate which Iris invariants are currently available. We will omit the

mask when it is not relevant for the current discussion; in that case the mask is arbitrary but fixed

(i.e., it must be the same for all wpi in a rule or theorem statement). In fact, this also applies to all

the wpi proof rules shown so far.6
Let us see how these masks appear in the rules for ConcE. Our library for ConcH provides

the rules in Figure 10 for spawn and yield. Both of these rules are more subtle than meets the eye.

Unlike other rules stated so far, WpiSpawn is stated over an extended handler ConcH ⊕ 𝐻 to allow

the spawned thread 𝑡 to also exhibit events that are not related to concurrency. The separating

conjunction in the premise expresses that the parent thread needs to split its resources in two

disjoint parts: one is passed to the new thread 𝑡 , the other is used to prove the postcondition

Φ. Remember that after using “bind”-like rules, Φ will typically itself be a weakest precondition,

capturing the verification condition for the continuation in the parent thread. That way, this

separating conjunction exactly captures that parent thread and the child thread may only access

disjoint state. But of course, this happens in the context of Iris, so one can use invariants to get

around that. This is where the other rule comes in: WpiYield only holds for the full mask ⊤. This
forces all invariants to be closed, thus ensuring that whenever execution switches from one thread

to another, the new thread can rely on all invariants being satisfied.

5We ignore slight technicalities that have to do with either later modalities or timeless propositions; see Jung et al. [21].

6For EmptyAdeqate and LangAdeqate, we add an Iris update modality in the conclusion that carries the mask.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 11. Publication date: January 2025.



11:16 Max Vistrup, Michael Sammler, and Ralf Jung

WpSpawn

wp⊤ 𝑒 {True}
wpE spawn {𝑒} {𝑣 . 𝑣 = unit}

WpInvOpen

𝑃 −∗ wpE\N 𝑒 {𝑟 . 𝑃 ∗ Φ(𝑟 )} 𝑃
N N ⊆ E

wpE 𝑒 {Φ}

WpBindStoreL

wp⊤ 𝑒1 {𝑣1. wp⊤ 𝑣1 ← 𝑒2 {Φ}}
wp⊤ 𝑒1 ← 𝑒2 {Φ}

WpBindStoreR

wp⊤ 𝑒2 {𝑣2. wp⊤ 𝑣1 ← 𝑣2 {Φ}}
wp⊤ 𝑣1 ← 𝑒2 {Φ}

Fig. 11. Excerpt of the program logic for the 𝜆Z,!,pick,spawn.

Furthermore, wpi permits the following rule for opening invariants:

WpiInvOpen

𝑃 −∗ wpi𝐻 ;E\N 𝑡 {𝑟 . 𝑃 ∗ Φ(𝑟 )} 𝑃
N N ⊆ E

wpi𝐻 ;E 𝑡 {Φ}

The attentive reader may notice the lack of an atomicity side-condition, which could seem like it

would render our rule unsound. This is, however, not the case. Yes, we can in fact open invariants

around arbitrary code 𝑡 , even when 𝑡 exhibits yields. But in that case, we will not be able to show

the wpi 𝑡 {· · ·} in the assumption because, as we saw, we can only step over yield using WpiYield if

we are at full mask ⊤.

Program logic. Nowwe can finally get back to 𝜆Z,!,pick,spawn. The program logic for our concurrent

language is defined largely as before, with a new handler ConcH for the ConcE events—and with

a mask, to handle opening and closing of invariants:

LangHZ,!,pick,spawn := ConcH ⊕ FailH ⊕ HeapHval ⊕ DemonicH

wpE 𝑒 {Φ} := wpiLangHZ,!,pick,spawn;E J𝑒K {Φ}

After replacing each wp by wpE , the extended logic continues to satisfy the rules seen so far: the

rules in Figure 2, the rules in Figure 4, and the rule WpPickInt. Additionally, it satisfies a number of

new proof rules, some of which are shown in Figure 11. Most rules, such as WpPlus and WpLoad,

support an arbitrary mask. However, the “bind” rules (e.g., WpBindStoreL and WpBindStoreR) as

well as the rule for 𝛽-reduction (WpApp) and reduction of if-expressions (WpIfTrue and WpIfFalse)

require all invariants to be closed. The reason for this is that these operations contain a yield, so
WpiYield forces the mask to be ⊤.

In other words, while we can apply WpInvOpen around expressions like ℓ1 ← 𝑣1; ℓ2 ← 𝑣2,

apparently treating the non-atomic sequence of two stores as “atomic”, we cannot complete that

proof because we would have to apply WpApp to reduce away the semicolon (which desugars to a

𝜆-abstraction in the usual way). Instead of the typical Iris approach of ensuring atomicity up-front

via a side-condition in WpInvOpen, atomicity is ensured “semantically” by making it impossible to

complete the proof when an invariant has been opened around an operation that yields.

4.3 Inside the Abstraction: Extending wpi with Support for Concurrency
We have seen, by example, how to use ConcE and ConcH, and we now show how we define them.

As it turns out, concurrency is a sufficiently “different” effect that we have to extend our definition

of handlers to support it.
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Defining ConcE. Similar to Choice Trees [7], we encode cooperative concurrency in ITrees

using an event type ConcE with three kinds of events:

(1) fork with answer type {cur, new}. This rather unusual event causes the continuation to be

run twice: the current thread continues its execution with the answer cur, and a new thread

is created that continues with answer new.
(2) yield with answer type (). This yields control to some running thread (which may be the

current thread again).

(3) endthread with answer type ∅. This safely ends the current thread and yields control to

another thread.

From these ingredients, the more familiar operation that spawns a thread running 𝑡 is defined by:

spawn(𝑡) := 𝑥 ← fork; if 𝑥 = cur then (yield;Ret(()) ) else (𝑡 ; endthread)

The newly created thread runs 𝑡 and then invokes endthread, thus ensuring that spawn itself only

returns once (in the parent thread).

Logical effect handlers with concurrency. To obtain a program logic, we have to define a

handler for these three events. Let us start by considering fork. One candidate definition would be:

ConcH(fork,Φ) := Φ(cur) ∗ Φ(new)

This models multithreading through the separating conjuction, as is usual in concurrent separation

logic. However, this definition breaks monotonicity. Note that HandlerMono is stated as a separation
logic version of monotonicity, i.e., using magic wands. This means the implication from Φ to Ψ can

only be used once, but the definition of ConcH above would have to use it twice. As a consequence,

this definition is incompatible with fundamental rules such as the frame rule. Intuitively, the

problem is that fork returns twice, so its continuation gets duplicated, which is not compatible with

the basic premise of separation logic where resources can only be used once.

To overcome this, we extend the notion of handlers to account for concurrency. We add a new

parameter Φ𝑠 , the thread-spawning logical continuation, to handlers: 𝐻𝐴 (𝑒,Φ,Φ𝑠 ). Here, Φ𝑠 (𝑎)
represents the weakest precondition for spawning a new thread executing the continuation for 𝑎 : 𝐴.

All the existing, sequential handlers will simply ignore this argument. We shall impose the following

extended monotonicity condition on handlers:

(∀𝑎. Φ(𝑎) −∗ Ψ(𝑎)) −∗ □(∀𝑎. Φ𝑠 (𝑎) −∗ Ψ𝑠 (𝑎)) −∗ 𝐻𝐴 (𝜖,Φ,Φ𝑠 ) −∗ 𝐻𝐴 (𝜖,Ψ,Ψ𝑠 )

In particular, the implication from Φ𝑠 to Ψ𝑠 is given under Iris’ persistence modality �, which means

that it can be used multiple times.

Updating wpi. We also have to update the weakest precondition for ITrees to account for this

new parameter (and for masks, as discussed above), arriving at its final, actual definition:

wpi𝐻 𝑡 {Φ} := |⇛


Φ(𝑟 ) if 𝑡 = Ret(𝑟 )
wpi𝐻 𝑡

′ {Φ} if 𝑡 = Tau(𝑡 ′)
𝐻𝐴 (𝜖, (𝜆𝑎. wpi𝐻 𝑘 (𝑎) {Φ}), (𝜆𝑎. |⇛⊤ ∅wpi𝐻 𝑘 (𝑎) {False})) if 𝑡 = Vis𝐴 (𝜖, 𝑘)

We use postcondition False for the thread spawning continuation to enforce that new threads

never end in a Ret(𝑟 ), i.e., only the main thread can return. This is critical to ward off the issues

related to fork returning twice. Essentially, this imposes a proof obligation to show that only the

original thread can return. spawn’s use of endthread ensures that this is the case.

On top of this, we define wpi with a mask as follows:

wpi𝐻 ;E 𝑡 {Φ} := |⇛E ∅wpi𝐻 𝑡 {𝑟 . |⇛∅ EΦ(𝑟 )}
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This definition permits all invariants in E to be opened for the entire computation represented by 𝑡 :

|⇛E ∅ is amask-changing update modality, which says that starting with mask E, arbitrary invariants
can be opened. (Iris masks support framing, so the empty mask does not force all invariants to be

opened.) Then, at the end of the computation |⇛∅ E demands that all the invariants in E are closed

before showing the postcondition Φ(𝑟 ).

Defining ConcH, correctly. With this out of the way, we can finally define ConcH:

ConcH(fork,Φ,Φ𝑠 ) := Φ(cur) ∗ Φ𝑠 (new)
ConcH(yield,Φ,Φ𝑠 ) := |⇛∅ ⊤ |⇛⊤ ∅Φ(())
ConcH(endthread,Φ,Φ𝑠 ) := |⇛∅ ⊤True

Crucially, the handler for fork uses Φ only once and thus satisfies monotonicity. The handler for

yield uses a mask-changing update |⇛∅ ⊤ to force all invariants to be closed, and then immediately

switches back to the empty mask which lets the invariants be opened again. However, this is

enough to ensure that for one instant, all invariants are satisfied, and thus we can soundly switch

from one thread to another. The handler for endthread is similar, except that it never returns to

the program, so after closing all invariants there is nothing left to be proven. From these handlers,

standard Iris reasoning can derive the rules in Figure 10 (on page 15).

4.4 Adequacy for Concurrency
Concurrency fits into the adequacy story from §2.4 as yet another reusable component. Given

an ITree 𝑡 : itree (ConcE ⊕ 𝐸) 𝑅, we specify what are the valid executions (or interleavings)
𝑡 ′ : itree 𝐸 𝑅 by means of an interpretation relation:

↓ConcE: itree (ConcE ⊕ 𝐸) 𝑅 → itree 𝐸 𝑅 → Prop

This relation, whose definition we shall return to in a moment, satisfies an adequacy theorem like

those before. Namely, the weakest precondition is preserved under any execution of ConcE events:

ConcAdeqate

𝑡 ↓ConcE 𝑡 ′ wpiConcH⊕𝐻 ;⊤ 𝑡 {Φ}
wpi𝐻 ;⊤ 𝑡

′ {Φ}

Adequacy for 𝜆Z,!,pick,spawn. The new interpretation relation for our language uses a composite

relation:

↓Z,!,pick,spawn : itree LangEZ,!,pick,spawn 𝑅 → itree ∅ (𝑅 ∪ {⊥fail}) → Prop

𝑡 ↓Z,!,pick,spawn 𝑡 ′ := ∃𝑡1, 𝑡2, 𝑡3. 𝑡 ↓ConcE 𝑡1 ↓FailE 𝑡2 ↓HeapE 𝑡3 ↓DemonicE 𝑡
′

Composing ConcAdeqate with the adequacy theorems in Figure 8, we obtain adequacy for our

language with concurrency:

LangAdeqate’

J𝑒K ↓Z,!,pick,spawn 𝑡 ′ wp⊤ 𝑒 {Φ}
∃𝑟 ≠ ⊥fail . 𝑡 ′ ≈ Ret(𝑟 ) ∗ Φ(𝑟 )

Although the order of the other events did not matter, it is important that we put ConcE in the

beginning of LangEZ,!,pick,spawn. Indeed, ConcE is a very special kind of event whose semantics

does not commute with, for example, the semantics of HeapE: if we interpreted HeapE before

ConcE (that is, 𝑡 ↓HeapE 𝑡1 ↓ConcE 𝑡2 · · · ), each thread would have its own independent copy of the

heap. To have the right interactions with other events, ConcE must always be interpreted first.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 11. Publication date: January 2025.



Program Logics à la Carte 11:19

ConcIrel

[𝑡] ↓0ConcE 𝑡
′

𝑡 ↓ConcE 𝑡 ′
ConcIrelRet

tp[𝑖 := Ret(𝑟 )] ↓𝑖ConcE Ret(𝑟 )

ConcIrelTau

tp[𝑖 := 𝑡] ↓𝑖ConcE 𝑡
′

tp[𝑖 := Tau(𝑡)] ↓𝑖ConcE Tau(𝑡 ′)

ConcIrelVis

𝜖 ∉ ConcE ∀𝑎. tp[𝑖 := 𝑘 (𝑎)] ↓𝑖ConcE 𝑘
′ (𝑎)

tp[𝑖 := Vis(𝜖, 𝑘)] ↓𝑖ConcE Vis(𝜖, 𝑘 ′)

ConcIrelYield

tp[𝑖 := 𝑘 (())] ↓𝑗ConcE 𝑡
′

tp[𝑖 := Vis(yield, 𝑘)] ↓𝑖ConcE Tau(𝑡 ′)

ConcIrelEndthread

delete(𝑖, tp) ↓𝑗ConcE 𝑡
′

tp[𝑖 := Vis(endthread, 𝑘)] ↓𝑖ConcE Tau(𝑡 ′)

ConcIrelFork

tp[𝑖 := 𝑘 (cur)] ++ [𝑘 (new)] ↓𝑖ConcE 𝑡
′

tp[𝑖 := Vis(fork, 𝑘)] ↓𝑖ConcE Tau(𝑡 ′)

Fig. 12. Definition of ↓ConcE.

The interpretation relation for ConcE. We now define the interpretation relation ↓ConcE for

ConcE. The first step is a thread pool evaluation relation tp ↓𝑖ConcE 𝑡
′
. Here, tp is a list of ITrees

representing the current threads, and 𝑖 is the index of the thread that is currently running. The

relation describes the ITrees 𝑡 ′ that can arise by interleaving thread executions in an arbitrary way.

Thread pool evaluation is defined coinductively as shown in Figure 12 (we implicitly assume

that every index 𝑖, 𝑗 is in-bounds). The key rules are ConcIrelYield, ConcIrelEndthread, and

ConcIrelFork, which define what happens when the active thread tp(𝑖) runs one of the ConcE
events. On a yield, we pick an arbitrary new thread 𝑗 with which to continue the execution. The

current thread 𝑖 is updated to reflect that the yield has been executed and returned (). We also add

a Tau event to 𝑡 ′; this ensures that the coinduction is well-formed. On an endthread, we delete the
current thread from the thread pool and continue the execution at some new thread 𝑗 .7 And finally,
fork updates the current thread 𝑖 to continue with the 𝑘 (cur) continuation and adds a new thread

to the thread pool that executes the 𝑘 (new) continuation. This is the key rule and the source of all

the complications we had to deal with above since it duplicates 𝑘 .

The remaining rules say that the interleaved ITree 𝑡 ′ mirrors the behavior of the active thread:

ConcIrelTau forwards silent steps, ConcIrelRet terminates execution when the active thread reaches

a Ret,8 and ConcIrelVis forwards visible events. Note how the latter requires the premise to be

shown for all possible answers 𝑎; the “interleaving” of an ITree is not just a single execution but

resolves all scheduling questions for all possible answers to uninterpreted events.

With this definition in place, we can tie it all together and prove ConcAdeqate. This proof is

highly non-trivial due to our use of a least fixpoint in the definition of wpi: we are showing that the
per-thread termination proof that is implicit in the premise carries over to all possible interleavings.

The proof also relies on a technical side-condition omitted in the paper: the handler 𝐻 for the

remaining events needs to be sequential, which means that it must be constant in the argument Φ𝑠 .

HeapAdeqate also carries this side-condition. Aside from ConcH, all handlers discussed in this

paper are sequential.

Interpreter. Using a round-robin scheduler, we can define an interpretation function

𝑓ConcE : itree (ConcE ⊕ 𝐸) 𝑅 → itree 𝐸 𝑅

7We omit some technical details related to what happens if the last thread ends, which is something that can never happen

in the languages we consider since the denotations into ITrees never put an endthread into the main thread.

8The denotation of a language into ITrees generally ensure that only the main thread ever reaches Ret; all the other threads
are ended with endthread.
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that instantiates the relation ↓ConcE in the sense that ∀𝑡 . 𝑡 ↓ConcE 𝑓ConcE (𝑡). As before, this can be

composed to an end-to-end interpreter for 𝜆Z,!,pick,spawn and a soundness result showing that if one

proves wp⊤ 𝑒 {Φ}, the interpreter applied to 𝑒 will terminate in a value 𝑣 ≠ ⊥fail.

5 Extension: Angelic Choice and State Machine Adequacy
We now discuss a second extension that enables our approach to support non-computational effects.
But first, let us explain what we mean by “non-computational effects” via a concrete example of

such an effect: angelic choice.

Angelic choice. Angelic choice [12] (or angelic non-determinism) is similar to the demonic

choice introduced in §2.3, except that it behaves dually: instead of having to prove correct behavior

for all choices during verification, we (the verifier) can pick one of the choices. The program is

correct if there exists any way to make a choice that leads to the desired outcome. Concretely, we can

represent angelic choice with an event type AngelicE that provides an operation angelic_choice𝐴 :

itree AngelicE 𝐴 with corresponding handler AngelicH such that we obtain the following rule:

WpiAngelic

∃𝑟 . Φ(𝑟 )
wpiAngelicH angelic_choice𝐴 {Φ}

Note that this rule is the same as WpiDemonic from Figure 6, except that the universal quantifier in

the premise is replaced by an existential quantifier.

Angelic choice is not commonly found in programming languages and cannot, in general, be

compiled to executable machine code. However, angelic choice does have a wide variety of use-cases

such as modelling partial programs [4] and concurrency [17, 10], reasoning about interaction with

external code [34, 16], and encoding concise specifications [12, 37]. As a concrete example, Sammler

et al. [34] use angelic choice to translate values between a C-like language and an assembly-like

language. Here, the challenge is that all values at the assembly level are represented by integers,

but values at the C level have more structure (i.e., values can be integers, pointers, or boolean).

Thus, when passing a value from an assembly program to a C program, one needs to recover this

structure. Since there is no information in the value to do this, Sammler et al. [34] rely on angelic

choice. With this approach, the verifier gets to decide whether an assembly integer corresponds to

an C integer, pointer, or boolean, as long as one can prove that the remaining program is correct for

this choice. (This is in contrast to demonic choice, where one would need to prove that the program

is correct for all choices.) The exact same approach is used in Melocoton [16] for reasoning about

translation of values between C and OCaml.

Adequacy for non-computational effects. A problem arises when we try to apply the adequacy

approach from §2.4 to AngelicE. So far all effects were computational, meaning the program exe-

cutions could be described by interpretation relations with corresponding interpretation functions.

But angelic choice does not fit this pattern: we cannot remove angelic choice by interpretation

since the witness of the angelic choice is not chosen by the interpretation but during verification.

To equip our framework with the ability to handle such non-computational effects, we introduce

a novel notion of “execution” for ITrees that turns an ITree into a state machine in a modular

way, side-stepping event interpretation altogether. We then prove adequacy of wpi w.r.t. that state
machine. While supporting more kinds of effects, this approach loses the connection to the typical

concept of event interpretation in ITrees, and in particular it does not give rise of a soundness

proof relating wpi to an interpreter.
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Turning ITrees into state machines. Concretely, for an ITree with events 𝐸 we pick a type of

states Σ and construct a state machine given by the following multi-step multi-relation:

(⇓) : itree 𝐸 𝑅 → Σ→ (itree 𝐸 𝑅 → Σ→ Prop) → Prop

The meaning of the execution relation (𝑡, 𝜎) ⇓ 𝑇 is subtle to explain, so we first consider some

examples. If 𝑡 does not contain any angelic choice, then for each possible sequence of demonic

choices, there will be a corresponding execution of the shape (𝑡, 𝜎) ⇓ {(𝑡 ′, 𝜎 ′)}. This corresponds to
a small-step reduction sequence (of 0 or more steps) between these two states. The set of outcomes

𝑇 (represented by a predicate) can always be made bigger, so the full meaning of (𝑡, 𝜎) ⇓ 𝑇 in

the absence of angelic choice is that there exists a sequence of demonic choices giving rise to a

reduction sequence starting at (𝑡, 𝜎) and ending in some state in 𝑇 .

Conversely, if 𝑡 only contains angelic choice, then there will be a single derivation of (𝑡, 𝜎) ⇓ 𝑇
with a large 𝑇 reflecting all the possible final values, plus further derivations due to closure under

larger 𝑇 , and derivations reflecting partial executions that do not reach a final value.

However, the key power in this relation lies in how it characterizes programs that mix demonic

and angelic choice. At this point we think of demonic and angelic choice as being two opponents

playing against each other, with their choices resolved by a strategy (in the game-theoretic sense).

An “execution” corresponds to a strategy of the demonic player, with the set of outcomes𝑇 bounding

the states that an arbitrary angelic strategy can reach against this player. As an example, consider

the following ITrees, where 𝑡a,d first performs an angelic then a demonic choice, and 𝑡d,a vice versa:

𝑡a,d := 𝑎 ← angelic_choiceZ;𝑑 ← choiceZ;Ret(𝑎, 𝑑)
𝑡d,a := 𝑑 ← choiceZ;𝑎 ← angelic_choiceZ;Ret(𝑎, 𝑑)

For 𝑡a,d, we have ∀𝑓 : Z→ Z. 𝑡a,d ⇓ {Ret(𝑎, 𝑓 (𝑎)) | 𝑎 ∈ Z}. This reflects the fact that for every
demonic strategy 𝑓 reacting to the initial angelic choice 𝑎, there is an execution that forces the return

value to be of the shape (𝑎, 𝑓 (𝑎)). In contrast, for 𝑡d,a we only have ∀𝑑 : Z. 𝑡d,a ⇓ {Ret(𝑎, 𝑑) | 𝑎 ∈ Z}.
This reflects the fact that the demonic choice cannot depend on the angelic choice. In particular,

𝑡a,d ⇓ {Ret(𝑎, 𝑎) | 𝑎 ∈ Z} holds but the same does not hold for 𝑡d,a.

In summary, (𝑡, 𝜎) ⇓ 𝑇 means that from 𝑡 with initial state 𝜎 , there exists a demonic strategy

such that no matter the angelic strategy, the execution will reach a state in 𝑇 . This representation

of state machines with both kinds of non-determinism follows prior work [31, 34, 16, 8] (but note

that some prior work swaps how angelic and demonic choice are represented).

We define ⇓ modularly by defining a step relation (⇝) : 𝐸 𝐴→ Σ→ (𝐴→ Σ→ Prop) → Prop
for every event provided by the event type 𝐸. This relation shows how the operation takes a

“small” step to its result, a set of the possible angelic choices. For example, the ⇝ relations for the

AngelicE, DemonicE, and HeapE𝑉 are given as follows:

∃𝑥 . 𝑇 (𝑥, 𝜎)
(choice𝐴, 𝜎) ⇝ 𝑇

∀𝑥 . 𝑇 (𝑥, 𝜎)
(angelic_choice𝐴, 𝜎) ⇝ 𝑇

𝑇 (𝜎 [ℓ], 𝜎)
(load(ℓ), 𝜎) ⇝ 𝑇

𝑇 (𝜎 [ℓ], 𝜎 [ℓ ↦→ 𝑣])
(store(ℓ, 𝑣), 𝜎) ⇝ 𝑇

Note how to construct an execution for demonic choice, we get to pick an answer 𝑥 , just like we

would when constructing a trace in a regular small-step semantics. As part of a larger derivation

witnessing an execution in our multi-relation, this choice of 𝑥 defines a strategy for making demonic

choices. Conversely, constructing an execution for angelic choice means proving that we can react

to all possible angelic answers while still remaining in the outcome set 𝑇 . Operations like load and

store (from §2.2) use the state 𝜎 to read resp. write the value for the given location.

We can define ⇝ for 𝐸1 ⊕ 𝐸2 from ⇝ for 𝐸1 and 𝐸2 by building the product of states and using

the step relation corresponding to the event. Overall, this allows us to automatically obtain ⇝ for

a combined event type like LangE.
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With⇝ at hand, we define ⇓ by coinductively lifting ⇝ to ITrees such that:

𝑇 (𝑡, 𝜎)
(𝑡, 𝜎) ⇓ 𝑇

(𝑡, 𝜎) ⇓ 𝑇
(Tau(𝑡), 𝜎) ⇓ 𝑇

(𝜖, 𝜎) ⇝ (𝜆𝑥, 𝜎 ′ . (𝑘 (𝑥), 𝜎 ′) ⇓ 𝑇 )
(Vis(𝜖, 𝑘), 𝜎) ⇓ 𝑇

Note how the first rule corresponds to terminating the current execution, but applies any time, not

just when 𝑡 is a Ret.

Adequacy in terms of state machines. After defining ⇓, we need to prove that its handling of

events agrees with the handler 𝐻 used by wpi𝐻 . We encode this as a condition sound(𝐻, 𝐼 ) where
𝐼 is a invariant on the state Σ. (The definition of sound(𝐻, 𝐼 ) can be found in the accompanying

Coq development.) Note that this condition can be proven once and for all for each handler since it

is independent of the verified ITree. We prove sound(𝐻, 𝐼 ) for all handlers presented in this paper

and show that it lifts to 𝐻1 ⊕ 𝐻2. (We even support concurrency via ConcE using an extended

version of ⇓ not covered in the paper.) We prove the following adequacy theorem for wpi𝐻 :9

StateMachineAdeqate

sound(𝐻, 𝐼 ) (𝑡, 𝜎) ⇓ 𝑇 𝐼 (𝜎) ∗ wpi𝐻 𝑡 {Φ}
∃𝑡 ′, 𝜎 ′ . 𝑇 (𝑡 ′, 𝜎 ′) ∗ 𝐼 (𝜎 ′) ∗ wpi𝐻 𝑡 ′ {Φ}

This theorem states that, for a sound handler 𝐻 , we can “step in” wpi𝐻 along a ⇓ execution after

proving 𝐼 for its initial state. We obtain a result (𝑡 ′, 𝜎 ′) in the set of final states𝑇 of the exection. The

invariant 𝐼 holds for the final state 𝜎 ′ and the “remaining” ITree 𝑡 ′ satisfies the weakest precondition
wpi𝐻 . In particular, if 𝑇 ensures that 𝑡 ′ is equal to Ret(𝑥), we obtain Φ(𝑥). Note that this holds for
every possible 𝑇 (demonically), but only for one (𝑡 ′, 𝜎 ′) in 𝑇 (angelically).

The fact that ⇓ is coinductively defined makes this theorem stronger than if it were inductively

defined. In particular, the premise can be established without proving that 𝑡 terminates. As a

consequence, this adequacy can even be used to prove termination by choosing a suitable 𝑇

indicating that the original 𝑡 terminates (for example, 𝑇 (𝑡, 𝜎) := ∃𝑟 . 𝑡 ≈ Ret(𝑟 )).
Overall, we obtain another approach to defining the concept of “executing” an ITree and a

corresponding adequacy theorem, both of which are built compositionally by combining reusable

pieces for individual effects.

6 Case Study: HeapLang
In this section, we demonstrate the applicability of our approach by using it to build a program

logic for HeapLang, the default language for program verification in Iris. HeapLang [21, §6.1] is

an untyped lambda calculus with an ML-like higher order heap and concurrency. Our objective

is to recover the original HeapLang program logic with all its basic rules [21, Figure 13] in a

compositional style using the theory developed in earlier sections. The syntax of the language is:

𝑣 ∈ val ::= () | 𝑧 | true | false | ℓ | rec 𝑓 (𝑥) := 𝑒 | · · · (𝑧 ∈ Z)
𝑒 ∈ expr ::= 𝑣 | x | 𝑒1 (𝑒2) | spawn {𝑒} | ref(𝑒) | ! 𝑒 | 𝑒1 ← 𝑒2 | CAS(𝑒, 𝑒1, 𝑒2) | · · ·
(Arithmetic operations and the usual operations on pairs and sums are ommited for brevity.)

Program logic for HeapLang. Following the same pattern as §2 and §4, we specify a semantics

for HeapLang by denoting expressions into itree HeapLangE val where

HeapLangE := ConcE ⊕ FailE ⊕ HeapEval ⊕ DemonicE

For most of the expressions, the semantic interpretation J_K is defined as for 𝜆Z,!,pick,spawn in §4,

except that HeapLang uses right-to-left evaluation order and its closures have a binder 𝑓 for

9We omit masks from this theorem to avoid clutter.
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recursive calls. Also, we tweak alloc (see §3.3) to instead pick the free location non-deterministically

(thus necessitating DemonicE among our events).

To build a program logic, we combine the various handlers from §3 using ⊕ to obtain a handler

HeapLangH for HeapLangE. As in §2, we then define wpE 𝑒 {Φ} := wpiHeapLangH;E J𝑒K {Φ}.
wpE 𝑒 {Φ} satisfies the various rules that were discussed in §2. Using the notion of evaluation

contexts 𝐾 [21, §6.1], the bind rules such as WpBindPlusL can be summarized in a single rule:

HlWpBind

wp⊤ 𝑒 {𝑣 . wp⊤ 𝐾 [𝑣] {Φ}}
wp⊤ 𝐾 [𝑒] {Φ}

(The ramifications of the full mask ⊤ were already discussed in §4.2.) This is a consequence of a

“semantic bind lemma” which says that the syntactic bind 𝐾 [𝑒] interprets to the monadic bind:

Lemma 6.1 (Semantic bind lemma). If 𝐾 ≠ • then J𝐾 [𝑒]K ≈ 𝑣 ← J𝑒Kyield; J𝐾 [𝑣]K.

6.1 Termination-Insensitive Reasoning
So far, we have only considered a very strong kind of program logic, namely a total weakest

precondition that ensures termination. This does not match the usual logic used for HeapLang,

which just proves partial correctness. In particular, the total weakest precondition has no coinductive

reasoning principles that can be used to verify, say, recursive functions without proving termination.

To address this, we also define a partial weakest precondition wp⊲E 𝑒 {Φ} that does not guarantee
termination. We can use our existing framework to define this weakest precondition without having

to redefine wpi. Iris approaches partial verification by means of the later modality ⊲ which comes

with a powerful coinductive reasoning principle: Löb induction [21, §5.6]. Typical Iris program logics

are set up such that the weakest precondition involves at least one ⊲ per program step, which can

be used with Löb induction to derive the usual partial correctness reasoning principle for recursive

functions. To achieve the samewith our approach, we define an event type StepEwith a single event,

step, with answer type (). The handler for StepE is then defined as StepH(step,Φ,Φ𝑠 ) := ⊲Φ(()) .
WedefineHeapLangE⊲

:=HeapLangE ⊕ StepE, andHeapLangH⊲
:=HeapLangH ⊕ StepH,

and finally define J𝑒K⊲ like J𝑒K but dredging step events at every point in J𝑒K that corresponds to a

step in the operational semantics (see the Coq code for the exact placement). The result is a partial

program logic wp⊲E 𝑒 {Φ} := wpiHeapLangH⊲
;E J𝑒K⊲ {Φ} validating the standard HeapLang rules.

In our Coq mechanization, we take this one step further and make StepH and wp parametric in

whether a later modality is emitted. This allows uniform treatment of partial and total correctness

and their proof rules in one framework without duplicated proof effort.

Adequacy for StepH. StepH fits into the compositional adequacy story of §2.4 as yet another

reusable piece. To describe the semantics of StepE, we define an interpretation relation

↓𝑛StepE: itree (StepE ⊕ 𝐸) 𝑅 → itree 𝐸 (𝑅 ∪ {⊥step_timeout}) → Prop for 𝑛 ∈ N

by coinduction according to the rules in Figure 13. For consistency, we write it as a relation, but

it can equivalently be written as a function 𝑓StepE. Intuitively, 𝑓StepE (𝑛, 𝑡) executes the first 𝑛 step
events in 𝑡 as no-ops. Once this “fuel” is used up, the next step event terminates program execution

by returning ⊥step_timeout.

The adequacy theorem (StepAdeqate) turns the wpi of 𝑡 into a wpi of every partial execution 𝑡 ′

of 𝑡 . It requires later credits £𝑛 (Spies et al. [38]) which provide the right to strip 𝑛 later modalities.

The Iris soundness theorem provides any fixed number of later credits, so this is sufficient to prove

that for every 𝑛, if the program terminates in 𝑛 steps, the postcondition holds.
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𝑛 > 0 𝑘 (()) ↓𝑛−1StepE 𝑡
′

Vis(step, 𝑘) ↓𝑛StepE Tau(𝑡 ′)
Vis(step, 𝑘) ↓0StepE Ret(⊥step_timeout) Ret(𝑟 ) ↓𝑛StepE Ret(𝑟 )

𝑡 ↓𝑛StepE 𝑡
′

Tau(𝑡) ↓𝑛StepE Tau(𝑡 ′)
𝜖 ∉ StepE ∀𝑎. 𝑘 (𝑎) ↓𝑛StepE 𝑘

′ (𝑎)
Vis(𝜖, 𝑘) ↓𝑛StepE Vis(𝜖, 𝑘 ′)

StepAdeqate

𝑡 ↓𝑛StepE 𝑡
′ wpiStepH⊕𝐻 ;∅ 𝑡 {Φ} ∗ £𝑛

wpi𝐻 ;∅ 𝑡
′ {𝑥 .match 𝑥 with ⊥step_timeout =⇒ True | 𝑟 =⇒ Φ(𝑟 )}

Fig. 13. Rules defining the coinductive relation ↓𝑛StepE, and adequacy for the corresponding handler.

6.2 A Verified Interpreter
As before, we can compose the interpretation functions for the compounding events to obtain

an interpreter for HeapLang and an associated correctness proof. Unlike the existing HeapLang

interpreter (which only exists as an experimental feature in the Iris development repository), this

does not require a full second, executable definition of the language semantics; we can just reuse

the ITree denotation. We also obtain a stronger soundness result for the interpreter, showing in

particular that if a program was proven to terminate using the total weakest precondition, then the

interpreter eventually terminates.

6.3 Correctness of ITree Semantics w.r.t. Operational Semantics
By composing interpretation relations as in §2.4, we obtain an interpretation relation ↓𝑛;𝜎HeapLangE⊲

which allows us to describe the executions of J𝑒K⊲. To provide assurance that this semantics

is meaningful, we prove a result relating it to the more well-established operational semantics

of HeapLang [21, Figure 12]. First, we define two notions of “adequacy” for a program w.r.t. a

postcondition, one in terms of ↓HeapLangE⊲ and one in terms of operational semantics:

Definition 6.2. 𝑒 is interpretationally adequate w.r.t. postcondition 𝜙 : 𝑅 → Prop if for every

𝜎, 𝑛, 𝑡 ′, 𝑟 such that J𝑒K⊲ ↓𝜎 ;𝑛HeapLangE⊲ 𝑡
′ ≈ Ret(𝑟 ), then 𝑟 ≠ ⊥fail and either 𝑟 = ⊥step_timeout or 𝜙 (𝑟 ).

Definition 6.3. A thread pool tp is progressive at heap 𝜎 if no thread is stuck: for each 𝑒 ∈ tp,
there is some 𝑒′, 𝜎 ′, ®𝑒𝑓 so that 𝑒;𝜎 −→t 𝑒

′
;𝜎 ′; ®𝑒𝑓 .

𝑒 is operationally adequate w.r.t. postcondition 𝜙 : val→ Prop if
(1) for any 𝜎, 𝜎 ′, tp′ such that [𝑒];𝜎 −→∗tp tp′;𝜎 ′, tp′ is progressive at heap 𝜎 ′, and
(2) for any 𝜎, 𝜎 ′, 𝑣, tp′ such that [𝑒];𝜎 −→∗tp [𝑣] ++ tp′;𝜎 ′, we have 𝜙 (𝑣).

The following chain of implications holds:

wp⊲⊤ 𝑒 {𝜙} =⇒ 𝑒 is interpretationally adequate w.r.t. 𝜙 =⇒ 𝑒 is operationally adequate w.r.t. 𝜙

The first implication is obtained modularly by composing the adequacy theorems seen so far.

The second implication relates the ITree semantics and the operational semantics. For reasons of

space, we cannot spell out the details here and refer the reader to our Coq formalization. The proof

is a simulation involving an intermediate notion of ITree traces that we define in our library. For an

operational semantics trace of length 𝑛 starting at 𝑒 , the proof constructs by induction an ITree

trace in J𝑒K⊲. The proof concludes by constructing the relational interpretation J𝑒K⊲ ↓𝜎 ;𝑛HeapLangE⊲ 𝑡
′
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from this ITree trace. The latter step is entirely modular and reusable: in our Coq formalization,

we provide a number of composable trace lemmata that allow the user to construct relational

interpretations from ITree traces.

6.4 Evaluation of the Program Logic
Having established a new program logic for HeapLang, we now turn to comparing it to the existing

program logic for HeapLang and evaluating the usefulness of our approach.

Expressive power of the logic. We obtain for our program logic nearly the same rules as

HeapLang’s existing program logic. The only significant difference is the fact that in our logic,

invariants can be opened around any block of code, at the expense of the bind rule HlWpBind

needing the full mask ⊤; cf. §4.2. Furthermore, while we still use the Iris proof mode [25, 23], we

have only reimplemented some of the additional proof mode integration and automation available

in the existing HeapLang implementation. We have also omitted support for the more recent

extension of HeapLang introducing prophecy variables [22].

In particular, our total weakest precondition corresponds to the existing total weakest precondi-

tion of Iris10 and thus shares its expressive power. Concretely, it can be used to show termination,

but not liveness, of concurrent programs and can use first-order invariants (thanks to Iris’ “timeless”

mechanism [21, §5.7]) such as sharing a points-to assertion between threads, but not higher-order

invariants (due to the lack of step-indexing).

To exemplify that our (partial) program logic gives the same expressive power as the original

HeapLang program logic, we have ported the proof of a join primitive and of a higher-order lock

with an impredicative invariant [39] from the original HeapLang to our logic.

Comparison of proof effort. There is a number of qualitative advantages in terms of proof

effort for establishing the HeapLang program logic using our ITree-based approach compared to

the standard Iris approach. For one, in the original HeapLang logic, it was necessary to state every

rule twice, once for partial correctness and once for total correctness, whereas we state and prove

the rules in a way that is parametric in partiality/totality (i.e., whether later modalities are emitted).

Furthermore, ITrees enable reuse of abstractions in the definition of the semantics, which in turn

leads to more compositional proofs. For example, the definition of J_K relies on helper functions

load and store, and their specifications can be reused in establishing the program logic. As we

discussed in the compare-and-swap example in §4.1, this kind of reuse is typically not available in

the setting of operational semantics.

Overall, our proofs have about the same size as the original, highly optimized proofs but require

less specialized proof engineering and have reasoning that is higher-level and compositional

(namely application of wpi lemmata rather than inverting the small-step relation).

7 Case Study: Islaris
As our second large case study, we redefine the program logic used by Islaris [32] using the approach

presented in this paper. Islaris provides an Iris-based program logic for traces that describe the

semantics of assembly programs based on authoritative models of real-world assembly languages

like Armv8 and RISC-V.

These traces are formally described by the Isla trace language (ITL) shown in Figure 14. An ITL

“program” is given by a trace 𝑡 , which correspond to the SMTLIB-traces generated by the Isla tool [3]

from partially evaluating the ISA models. Traces consist of events 𝑗 (not to be confused with the

10This part of Iris was never described in a paper; it can be found at https://gitlab.mpi-sws.org/iris/iris/-/blob/iris-4.2.0/iris/

program_logic/total_weakestpre.v.
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𝜏 ::= BitVec(𝑛) | Boolean | . . . 𝑒 ::= 𝑣 | not(𝑒) | bvadd(𝑒1, 𝑒2) | . . .
𝑗 ::= ReadReg(𝑟, 𝑣) | WriteReg(𝑟, 𝑣) | ReadMem(𝑣𝑑 , 𝑣𝑎, 𝑛) | WriteMem(𝑣𝑎, 𝑣𝑑 , 𝑛)
| AssumeReg(𝑟, 𝑣) | DeclareConst(𝑥, 𝜏) | DefineConst(𝑥, 𝑒) | Assert(𝑒) | Assume(𝑒)

𝑡 ::= [] | 𝑗 :: 𝑡 | Cases(𝑡1, . . . , 𝑡𝑛)

Fig. 14. Syntax of the Isla trace language (ITL) from Sammler et al. [32].

events 𝜖 used by ITrees) that describe how the ITL program manipulates the machine state (i.e.,
registers and memory). Events can in turn use standard SMTLIB expressions 𝑒 for manipulating bit

vectors and booleans.

Islaris is an interesting case study for this paper since it uses a variety of effects that exercise the

ability of our approach to handle non-standard programming languages. While the original work

had to rely on various tricks to fit the Isla trace language into the fixed interface provided by Iris,

we will see how our approach allows a direct encoding of Islaris using a combination of standard

and non-standard events. Concretely, Islaris uses the following event type:

IslarisE := DemonicE ⊕ StateE𝑆Islaris ⊕ FailE ⊕ StepE ⊕ HaltE ⊕ SpecE

We first have the standard events for demonic choice, state, and failure introduced in §2. We also

use the StepE event (§6.1) to obtain partial correctness reasoning principles for recursive programs.

Beyond this, Islaris uses two non-standard events that we discuss next: HaltE and SpecE.

HaltE. The HaltE event type provides the halt : itree HaltE ∅ operation that (safely) halts the

execution and trivially finishes verification (i.e., wpi halt {Φ} ⊣⊢ True). This operation is necessary

since ITL has an unusual way to read values from registers (andmemory), akin to prophecy variables:

First, it declares a variable that non-deterministically guesses the value that will be read from the

register (using DeclareConst(𝑥, 𝜏) from Figure 14). Then, the read operation ReadReg(𝑟, 𝑥) uses
halt to prune all executions where the value of the variable 𝑥 does not correspond to the actual

value of the register. (This unusual encoding of reads comes from the fact that the events 𝑗 in ITL

are SMT constraints that can only restrict existing variables but not assign them a new value.) Iris’s

language interface does not provide a dedicated mechanism to support the halt operation, so Islaris
uses a notion of a value that represents a halted program. With logical event handlers, we do not

need to rely on such encodings since we can just directly encode halt as its own event.

SpecE. The second non-standard event SpecE comes from the fact that Islaris does not just prove

the standard Iris adequacy that no program gets stuck (i.e., no fail occurs), but also proves that

the memory accesses to specially marked memory regions (representing MMIO regions) satisfy a

user-defined safety property. To reason about such externally visible events, Islaris uses an encoding

based on the observation mechanism that Jung et al. [22] introduced to reason about prophecy

variables. Instead, our approach directly supports defining a SpecE event type with an operation

emit(𝜅) where 𝜅 represents a visible event (i.e., read or write from resp. to MMIO memory) and a

handler ensuring the safety properties are upheld.

No concurrency. Note that IslarisE does not use the ConcE event. This is on purpose since

Islaris targets a sequential setting (verifying concurrent assembly programs against authoritative

semantics is a research topic on its own). However, while Sammler et al. describe the program logic

as sequential in the paper, in the actual Coq formalization it is concurrent (with a sequentially

consistent semantics that does not match the concurrency of the actual assembly languages) since
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1 Inductive trace_step :=
2 | AssertS e b ann es regs:
3 eval_exp e = Some (Val_Bool b) ->
4 trace_step (Smt (Assert e) ann :t: es) regs
5 (Some (LAssert b)) es
6 ...
7 Inductive seq_step :=
8 | SeqStep 𝜎 𝜃 𝜅 t' 𝜅' 𝜃' 𝜎':
9 𝜃.(seq_nb_state) = false →
10 trace_step 𝜃.(seq_trace) 𝜃.(seq_regs) 𝜅 t' →
11 match 𝜅 with
12 | Some (LAssert b) => 𝜎' = 𝜎 ∧ 𝜅' = None ∧
13 𝜃' = 𝜃 <| seq_trace := t' |> <| seq_nb_state := negb b|>
14 ...

(a) Semantics of Assert from Sammler et al. [32]

Fixpoint compile_trace' (t : isla_trace) :=
step.step;;
match t with
| Smt (Assert e) ann :t: es =>

v ← (eval_exp e)?; b ← (base_val_to_bool v)?;
assume b;; compile_trace' es

(b) Semantics of Assert from this work

Fig. 15. Comparison of semantic definitions

the Iris language interface only supports concurrent languages. This means that the original work

loses the reasoning principles for sequential languages (e.g., those pertaining to invariants). Our

formalization of Islaris does not suffer from this drawback since we can easily model a sequential

language by simply not using ConcE. You only pay for what you use.

Recreating the Islaris semantics and program logic. Using IslarisE, it is straightforward
to define a denotation from ITL traces into ITrees. In fact, the ITree-based definition significantly

simpler than the original definition since it can avoid the complex encodings described above. As

a concrete example, Figure 15 shows how the semantics of Assert(𝑒) are encoded in the original

version by Sammler et al. [32] and in the ITree-based version. The original version in Figure 15a

splits the evaluation into two relations: First, trace_step checks that the expression e evaluates to
the boolean b. Then, seq_step encodes the actual semantics of Assert(𝑒) by setting seq_nb_state
to true if the assert fails (i.e., e evaluates to false). This seq_nb_state field encodes whether the

execution should halt. (This is also seen on line 9 of Figure 15a, which ensures that the semantics

can only step if seq_nb_state is false.) The ITree-based version in Figure 15b is a single recursive

function that turns an ITL trace into an ITree. After checking that the expression e evaluates to the

boolean b, it uses the assume function provided by the HaltE library to halt execution if b is equal

to false. This shows how our ITree-based approach can replace the complex encoding based on

seq_nb_state with a reusable library.

With the compile_trace' function at hand, it is straightforward to derive the Islaris program

logic on top of it. We define a wpasm for Islaris using wpi and reprove all program logic rules of the

original Islaris. We also prove that our program logic satisfies the same adequacy statement as the

original work. For this, we leverage the state machine adequacy described in §5, showing that this

adequacy method can also scale to complex programming languages.

Even though we derive the same program logic with the same adequacy statement, the definition

and proofs of the ITree-based version are significantly smaller than the original version. Concretely,

the original definition of the trace_step and seq_step relations has around 130 LOC, while

our ITree-based compile_trace' function has around 90 LOC. Also the proofs establishing the

program logic become significantly smaller (around 270 LOC instead of around 450 LOC). What

is even more important is that these proofs are qualitatively simpler: The original proofs require

the use of a complex stepping lemma, followed by an inversion of the seq_step and trace_step
relations from Figure 15a that requires careful manipulation of the proof state by hand. In contrast,

the proofs for the ITree version consist of straightforward applications of the wpi lemmata for the

ITree defining the semantics.
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8 Related Work
We discuss related work along two axes: program logics that permit reuse across languages, and

the state of modeling and reasoning about various computational effects with ITrees.

8.1 Program Logics with Reuse
The most prominent example of a “language-agnostic” program logic intended to be instantiated

with a wide range of user-defined languages is Iris. The Iris technical manual [44, §8] describes their

language interface: an arbitrary type of expressions and global state, and an associated per-thread

small-step operational semantics—basically, a state transition system. Given an instance of this

interface, Iris provides a weakest precondition connective and associated program logic rules.

However, only the basic structural rules such as a bind lemma and a rule of consequence can be

shared. Each language needs to re-define almost every aspect of its operational semantics, and then

use “lifting lemmas” to provide corresponding reasoning principles in the program logic. Moreover,

the language interface can be quite rigid: for instance, the only way a program may terminate is

by returning a value, which means supporting an operation that halts the machine abruptly (but

safely) from anywhere in the program requires non-trivial modeling. Iris also has to define two

entirely separate weakest precondition connectives for total and partial correctness reasoning.

There is a reusable library for defining the standard points-to connective, but its relation to the

operational semantics needs to be re-proven for each new language.

In contrast, our approach allowsmore flexibility andmore reuse: the same basic program logic can

support both total and partial correctness reasoning, aHaltE effect for safe machine termination is

easily supported, and the HeapE effect library can provide a ready-to-use points-to connective

that is already integrated with the ITree semantics, to name a few. However, so far we have not

implemented support for HeapLang’s prophecy variables [22] in our approach; that remains an

interesting candidate for future work.

Abstract Separation Logic [5] defines a separation logic for a language that is denoted into a

trace of “local actions” that each describe how the global state is altered. However, these actions do

immediately act on the global state; there is no layering that would allow building up the global

state from smaller, reusable pieces. Similarly, the Views framework [11] is defined for any language

generated by a set of “atomic commands” that are given as (global) state transformers. In contrast,

our approach supports composing HeapE with another instance of StateE that governs a separate

piece of state (such as a file system or a network).

Dijkstra Monads [41, 18, 1, 26] provide a foundation for deriving weakest precondition connec-

tives for arbitrary monadic computations. By applying a suitable sequence of monad transformers

(which are in particular endofunctors on the category of monads) to a base effect observation (a

morphism from a computation monad to a specification monad), one can build up the weakest

precondition connective effect-by-effect. Their theory therefore encapsulates a different flavor of

compositionally built program logics: instead of a single weakest precondition connective that

generalizes to a wide range of effects, they systematically derive a new weakest precondition con-

nective for each combination of such effects. However, since monads and concurrent computation

are ill-fitted, they do not offer support for reasoning about concurrent programs. Furthermore,

reasoning about state in this framework involves directly talking about the entire state; there is no

separation logic support for local reasoning about memory.

Outcome Logic [50] provides a unified logic for reasoning about termination and non-termination

(among other things). This gives a similar uniform treatment of partial and total correctness as our

StepH handler described in §6.1. However, Outcome Logic focuses on unifying even more different

reasoning style (e.g., correctness and incorrectness reasoning), while we aim to provide a modular
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approach for building program logics. While outcome logic can handle both demonic and angelic

choice, it does not currently support using both of them in the same program, unlike our approach.

8.2 ITrees
The ITree line of work has so far mostly been focused on being able to formally capture the

semantics of languages in a uniform framework and performing equational reasoning based on

those semantics. As such, there has not been a lot of work on program logics for ITrees. The most

notable exception is the work by Silver and Zdancewic [36] which applies Dijkstra monads to

reason about ITrees. Using the recipe set out by Dijkstra monads, they derive a program logic for

a specific ITree-based language (a simple imperative language called IMP) but do not discuss the

idea of reusing program logic components and rules across languages.

The by far biggest application of ITrees is the VellVM project [49] which models a significant

fraction of the LLVM IR specification using ITrees. They use a wide range of effects for that, most of

which are also supported by our framework: several kinds of state, non-deterministic choice, fatal

failure, and non-fatal machine termination. The one effect we have not implemented is external

function calls; this is an interesting direction for future work. That would then allow us to build a

program logic for the VellVM semantics of LLVM IR.

Choice Trees [7] extend ITrees with a native form of (demonic) non-deterministic choice. This

is quite different from VellVM and our own approach where non-deterministic choice is just yet

another effect. The payoff for special-casing choice is that the equational theory can be extended to

properly support reasoning about choice. Our use of a program logic can be seen as an alternative

approach for reasoning about ITrees with non-determinism that avoids special-casing. One case

study for Choice Trees is a model of cooperative concurrency very similar to ours: thread forking is

defined by duplicating the continuation. They give semantics to this model via a non-deterministic

scheduler expressed directly in Choice Trees. We believe that our relational interpretation of the

concurrency effects produce the same result. The new contribution of our framework is that we

build a fully-featured concurrent separation logic for reasoning about these ITrees, enjoying all the

concurrent reasoning principles that Iris provides. As part of our HeapLang case study, we also

proved that this cooperative model of concurrency indeed soundly models all possible behaviors

of a language defined with a small-step operational semantics and preemptive concurrency. Our

approach is also able to support angelic choice as yet another effect, in contrast to Choice Trees

that only support demonic choice.

Guarded interaction trees [13] (GITrees) provide a fully denotational model of a language with

higher-order state into a variant of ITrees with support for higher-order events. This is different

from our model of HeapLang (which also supports higher-order state): our heap stores syntactic
HeapLang values, representing closures as expressions rather than their denotations. This makes

our model much less suited for equational reasoning, but also much less technically demanding.

Furthermore, event interpretation in GITrees hard-codes the state monad and therefore does not

support other effects such as non-determinism and concurrency. It would be interesting to combine

these lines of work and extend our program logic to support reasoning about GITrees.
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