
Stacked Borrows:
An Aliasing Model for Rust

Ralf Jung1,2, Hoang-Hai Dang1, Jeehoon Kang3, Derek Dreyer1

PRiML 2020 in Beijing Saarbrücken The Internet
1MPI-SWS, Germany
2Mozilla, USA
3KAIST, Korea

1



Rust – Mozilla’s replacement for C/C++

Rust is the only language to provide. . .

• Low-level control à la C/C++
• Strong safety guarantees
• Modern, functional paradigms
• Industrial development and backing

Core ingredient: sophisticated type system
“mainstream”

Goal: exploit the unique
type information

available in Rust for
optimizations

2



Rust – Mozilla’s replacement for C/C++

Rust is the only language to provide. . .

• Low-level control à la C/C++
• Strong safety guarantees
• Modern, functional paradigms
• Industrial development and backing

Core ingredient: sophisticated type system

“mainstream”

Goal: exploit the unique
type information

available in Rust for
optimizations

2



Rust – Mozilla’s replacement for C/C++

Rust is the only language to provide. . .

• Low-level control à la C/C++
• Strong safety guarantees
• Modern, functional paradigms
• Industrial development and backing

Core ingredient: sophisticated type system

“mainstream”

Goal: exploit the unique
type information

available in Rust for
optimizations

2



Rust – Mozilla’s replacement for C/C++

Rust is the only language to provide. . .

• Low-level control à la C/C++
• Strong safety guarantees
• Modern, functional paradigms
• Industrial development and backing

Core ingredient: sophisticated type system

“mainstream”

Goal: exploit the unique
type information

available in Rust for
optimizations

2



Rust’s reference type comes in two flavors:

1. Mutable reference: &mut T

(no aliasing)
2. Shared reference: &T

(no mutation by anyone)

Mutation
+

Aliasing

Rust’s reference types provide
strong aliasing information.

The optimizer should exploit that!

3



Rust’s reference type comes in two flavors:

1. Mutable reference: &mut T

(no aliasing)
2. Shared reference: &T

(no mutation by anyone)

Mutation
+

Aliasing

Rust’s reference types provide
strong aliasing information.

The optimizer should exploit that!

3



Aliasing guarantees: &mut T Examples

fn test_noalias(x: &mut i32, y: &mut i32) -> i32 {

// x, y cannot alias: they are unique pointers

*x = 42;

*y = 37;

return *x; // must return 42

}

escaped pointer

unknown code

4



Aliasing guarantees: &mut T Examples

fn test_unique(x: &mut i32) -> i32 {

*x = 42;

// unknown_function cannot have an alias to x

unknown_function();

return *x; // must return 42

}

escaped pointer

unknown code

4



Aliasing guarantees: &mut T Examples

fn test_unique(x: &mut i32) -> i32 {

*x = 42;

// unknown_function cannot have an alias to x

unknown_function();

return *x; // must return 42

}

escaped pointer

unknown code

4



Aliasing guarantees: &T Examples

fn test_noalias_shared(x: &i32, y: &mut i32) -> i32 {

let val = *x;

// cannot mutate x: x points to immutable data

*y = 37;

return *x == val; // must return true

}

escaped pointer

unknown code with
access to x

These optimizations are the wildest
dreams of C compiler developers!

But there is a problem:

UNSAFE CODE!

5



Aliasing guarantees: &T Examples

fn test_shared(x: &i32) -> bool {

let val = *x;

// unknown_function_shared cannot mutate x

unknown_function_shared(x);

return *x == val; // must return true

}

escaped pointer

unknown code with
access to x

These optimizations are the wildest
dreams of C compiler developers!

But there is a problem:

UNSAFE CODE!

5



Aliasing guarantees: &T Examples

fn test_shared(x: &i32) -> bool {

let val = *x;

// unknown_function_shared cannot mutate x

unknown_function_shared(x);

return *x == val; // must return true

}

escaped pointer

unknown code with
access to x

These optimizations are the wildest
dreams of C compiler developers!

But there is a problem:

UNSAFE CODE!

5



Aliasing guarantees: &T Examples

fn test_shared(x: &i32) -> bool {

let val = *x;

// unknown_function_shared cannot mutate x

unknown_function_shared(x);

return *x == val; // must return true

}

escaped pointer

unknown code with
access to x

These optimizations are the wildest
dreams of C compiler developers!

But there is a problem:

UNSAFE CODE!

5



Aliasing guarantees: &T Examples

fn test_shared(x: &i32) -> bool {

let val = *x;

// unknown_function_shared cannot mutate x

unknown_function_shared(x);

return *x == val; // must return true

}

escaped pointer

unknown code with
access to x

These optimizations are the wildest
dreams of C compiler developers!

But there is a problem:

UNSAFE CODE!

5



Aliasing guarantees: &T Examples

fn test_shared(x: &i32) -> bool {

let val = *x;

// unknown_function_shared cannot mutate x

unknown_function_shared(x);

return *x == val; // must return true

}

escaped pointer

unknown code with
access to x

These optimizations are the wildest
dreams of C compiler developers!

But there is a problem:

UNSAFE CODE!

5



Unsafe code can access hazardous operations
that are banned in safe code.
unsafe fn hazardous(x: usize) -> i32 {

// *mut T is the type of raw (unsafe) pointers

let x_ptr = x as *mut i32;

return *x_ptr; // dereferencing an arbitrary integer

}

• Used for better performance, FFI,
implementing many standard library types
• Generally encapsulated by safe APIs

6



Unsafe code can access hazardous operations
that are banned in safe code.
unsafe fn hazardous(x: usize) -> i32 {

// *mut T is the type of raw (unsafe) pointers

let x_ptr = x as *mut i32;

return *x_ptr; // dereferencing an arbitrary integer

}

• Used for better performance, FFI,
implementing many standard library types
• Generally encapsulated by safe APIs

6



1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer);

7: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // must return 42

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.

7



1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer);

7: }

l

ALIAS

x

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // must return 42

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.

7



1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer);

7: }

l

ALIAS

x

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.

7



1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer);

7: }

l
ALIASx

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.

7



1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7

Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.

7



1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7

Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.

7



1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7

Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.

7



Review: Undefined Behavior

Use of unsafe code imposes
proof obligations on the programmer:
No use of dangling/NULL pointers, no data races, . . .

Violation of proof obligation leads to
Undefined Behavior.

Image: dbeast32

Compilers can rely on these proof
obligations when

justifying optimizations

8

https://www.fiverr.com/dbeast32


Review: Undefined Behavior

Use of unsafe code imposes
proof obligations on the programmer:
No use of dangling/NULL pointers, no data races, . . .

Violation of proof obligation leads to
Undefined Behavior.

Image: dbeast32

Compilers can rely on these proof
obligations when

justifying optimizations

8

https://www.fiverr.com/dbeast32


Review: Undefined Behavior

Use of unsafe code imposes
proof obligations on the programmer:
No use of dangling/NULL pointers, no data races, . . .

Violation of proof obligation leads to
Undefined Behavior.

Image: dbeast32

Compilers can rely on these proof
obligations when

justifying optimizations

8

https://www.fiverr.com/dbeast32


Review: Undefined Behavior

Use of unsafe code imposes
proof obligations on the programmer:
No use of dangling/NULL pointers, no data races, . . .

Violation of proof obligation leads to
Undefined Behavior.

Image: dbeast32

Compilers can rely on these proof
obligations when

justifying optimizations

8

https://www.fiverr.com/dbeast32


1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7

Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.

9



Stacked Borrows

Aliasing model defining which pointers
may be used to access memory,

ensuring

• uniqueness of mutable references, and
• immutability of shared references.

• Stacked Borrows is restrictive enough
to enable useful optimizations

formal proof
• Stacked Borrows is permissive enough

to enable programming
checked standard library test suite by
instrumenting the Rust interpreter Miri

10



Stacked Borrows

Aliasing model defining which pointers
may be used to access memory,

ensuring

• uniqueness of mutable references, and
• immutability of shared references.

• Stacked Borrows is restrictive enough
to enable useful optimizations

formal proof
• Stacked Borrows is permissive enough

to enable programming
checked standard library test suite by
instrumenting the Rust interpreter Miri

10



Stacked Borrows

Aliasing model defining which pointers
may be used to access memory,

ensuring

• uniqueness of mutable references, and
• immutability of shared references.

• Stacked Borrows is restrictive enough
to enable useful optimizations

formal proof

• Stacked Borrows is permissive enough
to enable programming

checked standard library test suite by
instrumenting the Rust interpreter Miri

10



Stacked Borrows

Aliasing model defining which pointers
may be used to access memory,

ensuring

• uniqueness of mutable references, and
• immutability of shared references.

• Stacked Borrows is restrictive enough
to enable useful optimizations

formal proof
• Stacked Borrows is permissive enough

to enable programming
checked standard library test suite by
instrumenting the Rust interpreter Miri

10



Stacked Borrows: Key Idea

Model proof obligations after
existing static “borrow” check

Borrow Checker Stacked Borrows
static dynamic

only safe code safe & unsafe code

11



1: let mut l = 13;

2: let a = &mut l; // a *borrows* from l

3: let b = &mut *a; // b *reborrows* from a

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Conflicting use of a

(Re)borrows are organized
in a stack.

12



1: let mut l = 13;

2: let a = &mut l; // a *borrows* from l

3: let b = &mut *a; // b *reborrows* from a

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Conflicting use of a

(Re)borrows are organized
in a stack.

12



1: let mut l = 13;

2: let a = &mut l; // a *borrows* from l

3: let b = &mut *a; // b *reborrows* from a

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Conflicting use of a

(Re)borrows are organized
in a stack.

12



1: let mut l = 13;

2: let a = &mut l; // a *borrows* from l

3: let b = &mut *a; // b *reborrows* from a

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Conflicting use of a

(Re)borrows are organized
in a stack.

12



1: let mut l = 13;

2: let a = &mut l; // a *borrows* from l

3: let b = &mut *a; // b *reborrows* from a

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Conflicting use of a

(Re)borrows are organized
in a stack.

12



1: let mut l = 13;

2: let a = &mut l; // a *borrows* from l

3: let b = &mut *a; // b *reborrows* from a

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Conflicting use of a

1. The lender a does not get used until the
lifetime of the loan has expired.

2. The recipient of the borrow b may only be
used while its lifetime is ongoing.

(Re)borrows are organized
in a stack.

12



1: let mut l = 13;

2: let a = &mut l; // a *borrows* from l

3: let b = &mut *a; // b *reborrows* from a

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Conflicting use of a

1. The lender a does not get used until the
lifetime of the loan has expired.

2. The recipient of the borrow b may only be
used while its lifetime is ongoing.

(Re)borrows are organized
in a stack.

12



1: let mut l = 13;

2: let a = &mut l; // a *borrows* from l

3: let b = &mut *a; // b *reborrows* from a

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Conflicting use of a

• Chain of borrows:
l borrowed to a reborrowed to b

• Well-bracketed: no ABAB

(Re)borrows are organized
in a stack.

12



1: let mut l = 13;

2: let a = &mut l; // a *borrows* from l

3: let b = &mut *a; // b *reborrows* from a

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Conflicting use of a

• Chain of borrows:
l borrowed to a reborrowed to b

• Well-bracketed: no ABAB

(Re)borrows are organized
in a stack.

12



Stacked Borrows ingredients

Pointer values carry a tag (PtrVal , Loc× N)
Example: (0x40, 1)

references (&mut T) are
identified by a tag

raw pointers (*mut T) fall
back to untagged

Every location in memory comes with an
associated stack (Mem , Loc �n−⇀ Byte× Stack)
...

0x40: 0xFE, [0: Unique, 1: Unique]
...

Reference tagged 1 borrows from reference
tagged 0

Untagged pointer(s) borrow(s) from reference
tagged 0

For every use of a reference or raw pointer:
• Extra proof obligation:
⇒ the tag must be in the stack
• Extra operational e�ect:
⇒ pop elements further up o� the stack

13



Stacked Borrows ingredients

Pointer values carry a tag (PtrVal , Loc× N)
Example: (0x40, 1)

references (&mut T) are
identified by a tag

raw pointers (*mut T) fall
back to untagged

Every location in memory comes with an
associated stack (Mem , Loc �n−⇀ Byte× Stack)
...

0x40: 0xFE, [0: Unique, 1: Unique]
...

Reference tagged 1 borrows from reference
tagged 0

Untagged pointer(s) borrow(s) from reference
tagged 0For every use of a reference or raw pointer:

• Extra proof obligation:
⇒ the tag must be in the stack
• Extra operational e�ect:
⇒ pop elements further up o� the stack

13



Stacked Borrows ingredients

Pointer values carry a tag (PtrVal , Loc× N)
Example: (0x40, 1)

references (&mut T) are
identified by a tag

raw pointers (*mut T) fall
back to untagged

Every location in memory comes with an
associated stack (Mem , Loc �n−⇀ Byte× Stack)
...

0x40: 0xFE, [0: Unique, 1: Unique]
...

Reference tagged 1 borrows from reference
tagged 0

Untagged pointer(s) borrow(s) from reference
tagged 0For every use of a reference or raw pointer:

• Extra proof obligation:
⇒ the tag must be in the stack
• Extra operational e�ect:
⇒ pop elements further up o� the stack

13



Stacked Borrows ingredients

Pointer values carry a tag (PtrVal , Loc× N)
Example: (0x40, 1)

references (&mut T) are
identified by a tag

raw pointers (*mut T) fall
back to untagged

Every location in memory comes with an
associated stack (Mem , Loc �n−⇀ Byte× Stack)
...

0x40: 0xFE, [0: Unique, 1: Unique]
...

Reference tagged 1 borrows from reference
tagged 0

Untagged pointer(s) borrow(s) from reference
tagged 0

For every use of a reference or raw pointer:
• Extra proof obligation:
⇒ the tag must be in the stack
• Extra operational e�ect:
⇒ pop elements further up o� the stack

13



1: let mut l = 13;

2: let a = &mut l;

3: let b = &mut *a;

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Stack:

In safe code, such Stacked
Borrows violations are

prevented by the
borrow checker.

14



1: let mut l = 13; // Tag: 0

2: let a = &mut l; // Tag: 1

3: let b = &mut *a; // Tag: 2

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Stack:

In safe code, such Stacked
Borrows violations are

prevented by the
borrow checker.

14



1: let mut l = 13; // Tag: 0

2: let a = &mut l; // Tag: 1

3: let b = &mut *a; // Tag: 2

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Stack:
[0: Unique]

In safe code, such Stacked
Borrows violations are

prevented by the
borrow checker.

14



1: let mut l = 13; // Tag: 0

2: let a = &mut l; // Tag: 1

3: let b = &mut *a; // Tag: 2

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Stack:
[0: Unique, 1: Unique]

Find old tag 0 on stack;
pop items above (none);
add new tag 1: Unique above it

In safe code, such Stacked
Borrows violations are

prevented by the
borrow checker.

14



1: let mut l = 13; // Tag: 0

2: let a = &mut l; // Tag: 1

3: let b = &mut *a; // Tag: 2

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Stack:
[0: Unique, 1: Unique, 2: Unique]

Find old tag 1 on stack;
pop items above (none);
add new tag 2: Unique above it

In safe code, such Stacked
Borrows violations are

prevented by the
borrow checker.

14



1: let mut l = 13; // Tag: 0

2: let a = &mut l; // Tag: 1

3: let b = &mut *a; // Tag: 2

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Stack:
[0: Unique, 1: Unique, 2: Unique]

Find tag 2 on stack;
pop items above (none)

In safe code, such Stacked
Borrows violations are

prevented by the
borrow checker.

14



1: let mut l = 13; // Tag: 0

2: let a = &mut l; // Tag: 1

3: let b = &mut *a; // Tag: 2

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Stack:
[0: Unique, 1: Unique, 2: Unique]

Find tag 1 on stack;
pop items above (2: Unique)

In safe code, such Stacked
Borrows violations are

prevented by the
borrow checker.

14



1: let mut l = 13; // Tag: 0

2: let a = &mut l; // Tag: 1

3: let b = &mut *a; // Tag: 2

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Stack:
[0: Unique, 1: Unique]

Find tag 2 on stack – there is no such item!

In safe code, such Stacked
Borrows violations are

prevented by the
borrow checker.

14



1: let mut l = 13; // Tag: 0

2: let a = &mut l; // Tag: 1

3: let b = &mut *a; // Tag: 2

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Stack:
[0: Unique, 1: Unique]

Find tag 2 on stack – there is no such item!

In safe code, such Stacked
Borrows violations are

prevented by the
borrow checker.

14



1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.

15



1: let mut l = 13;

2: let ALIAS = &mut l as *mut i32;

3: let x = &mut l; // was argument to test_unique

4: *x = 42;

5: unsafe { *ALIAS = 7; } // was unknown_function

6: println!("The answer is {}", *x);

Stack:It is undefined behavior to use a
pointer whose tag is not on the stack.

16



1: let mut l = 13; // Tag: 0

2: let ALIAS = &mut l as *mut i32; // Tag: ⊥
3: let x = &mut l; // Tag: 1

4: *x = 42;

5: unsafe { *ALIAS = 7; }

6: println!("The answer is {}", *x);

Stack:It is undefined behavior to use a
pointer whose tag is not on the stack.

16



1: let mut l = 13; // Tag: 0

2: let ALIAS = &mut l as *mut i32; // Tag: ⊥
3: let x = &mut l; // Tag: 1

4: *x = 42;

5: unsafe { *ALIAS = 7; }

6: println!("The answer is {}", *x);

Stack:
[0: Unique]

It is undefined behavior to use a
pointer whose tag is not on the stack.

16



1: let mut l = 13; // Tag: 0

2: let ALIAS = &mut l as *mut i32; // Tag: ⊥

3: let x = &mut l; // Tag: 1

4: *x = 42;

5: unsafe { *ALIAS = 7; }

6: println!("The answer is {}", *x);

Stack:
[0: Unique, ⊥: SharedRW]

Find old tag 0 on stack;
pop items above (none);
add new tag ⊥: SharedRW above it

It is undefined behavior to use a
pointer whose tag is not on the stack.

16



1: let mut l = 13; // Tag: 0

2: let ALIAS = &mut l as *mut i32; // Tag: ⊥
3: let x = &mut l; // Tag: 1

4: *x = 42;

5: unsafe { *ALIAS = 7; }

6: println!("The answer is {}", *x);

Stack:
[0: Unique, ⊥: SharedRW, 1: Unique]

Find old tag 0 on stack;
pop items above (⊥: SharedRW);
push new tag 1: Unique

It is undefined behavior to use a
pointer whose tag is not on the stack.

16



1: let mut l = 13; // Tag: 0

2: let ALIAS = &mut l as *mut i32; // Tag: ⊥
3: let x = &mut l; // Tag: 1

4: *x = 42;

5: unsafe { *ALIAS = 7; }

6: println!("The answer is {}", *x);

Stack:
[0: Unique, 1: Unique]

Find tag 1 on stack;
pop items above (none)

It is undefined behavior to use a
pointer whose tag is not on the stack.

16



1: let mut l = 13; // Tag: 0

2: let ALIAS = &mut l as *mut i32; // Tag: ⊥
3: let x = &mut l; // Tag: 1

4: *x = 42;

5: unsafe { *ALIAS = 7; }

6: println!("The answer is {}", *x);

Stack:
[0: Unique, 1: Unique]

Find tag ⊥ on stack – there is no such item!

It is undefined behavior to use a
pointer whose tag is not on the stack.

16



1: let mut l = 13; // Tag: 0

2: let ALIAS = &mut l as *mut i32; // Tag: ⊥
3: let x = &mut l; // Tag: 1

4: *x = 42;

5: unsafe { *ALIAS = 7; }

6: println!("The answer is {}", *x);

Stack:
[0: Unique, 1: Unique]

Find tag ⊥ on stack – there is no such item!

It is undefined behavior to use a
pointer whose tag is not on the stack.

16



Stacked Borrows

Aliasing model defining which pointers
may be used to access memory,

ensuring

• uniqueness of mutable references, and
• immutability of shared references.

• Stacked Borrows is restrictive enough
to enable useful optimizations

formal proof
• Stacked Borrows is permissive enough

to enable programming
checked standard library test suite by
instrumenting the Rust interpreter Miri

17



Stacked Borrows

Aliasing model defining which pointers
may be used to access memory,

ensuring

• uniqueness of mutable references, and
• immutability of shared references.

• Stacked Borrows is restrictive enough
to enable useful optimizations

formal proof

• Stacked Borrows is permissive enough
to enable programming

checked standard library test suite by
instrumenting the Rust interpreter Miri

17



Incomplete proof sketch

fn test_unique(x: &mut i32) -> i32 {

*x = 42;

unknown_function();

return *x; // must return 42

}

x’s tag is at the top of the stack

UB unless x’s
permission is

still in the stack

if unknown_function accesses this
memory, it will pop x’s tag o� the stack

18



Incomplete proof sketch

fn test_unique(x: &mut i32) -> i32 {

*x = 42;

unknown_function();

return *x; // must return 42

}

x’s tag is at the top of the stack

UB unless x’s
permission is

still in the stack

if unknown_function accesses this
memory, it will pop x’s tag o� the stack

18



Incomplete proof sketch

fn test_unique(x: &mut i32) -> i32 {

*x = 42;

unknown_function();

return *x; // must return 42

}

x’s tag is at the top of the stack

UB unless x’s
permission is

still in the stack

if unknown_function accesses this
memory, it will pop x’s tag o� the stack

18



Incomplete proof sketch

fn test_unique(x: &mut i32) -> i32 {

*x = 42;

unknown_function();

return *x; // must return 42

}

x’s tag is at the top of the stack

UB unless x’s
permission is

still in the stack

if unknown_function accesses this
memory, it will pop x’s tag o� the stack

18



Stacked Borrows

Aliasing model defining which pointers
may be used to access memory,

ensuring

• uniqueness of mutable references, and
• immutability of shared references.

• Stacked Borrows is restrictive enough
to enable useful optimizations

formal proof

• Stacked Borrows is permissive enough
to enable programming

checked standard library test suite by
instrumenting the Rust interpreter Miri

19



Stacked Borrows

Aliasing model defining which pointers
may be used to access memory,

ensuring

• uniqueness of mutable references, and
• immutability of shared references.

• Stacked Borrows is restrictive enough
to enable useful optimizations

formal proof

• Stacked Borrows is permissive enough
to enable programming

checked standard library test suite by
instrumenting the Rust interpreter Miri

19



1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.

20



1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.

20



1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.

20



What else?

What I didn’t talk about:

• Shared references & interior mutability
• Protectors (enable writes to be moved across

unknown code)

Future work:

• Concurrency
• Integrating Stacked Borrows into RustBelt

21



A dynamic model of Rust’s reference
checker ensures soundness of

type-based optimizations, even in the
presence of unsafe code.

Try Miri out yourself!
• Web version: https://play.rust-lang.org/ (“Tools”)
• Installation: rustup component add miri

• Miri website: https://github.com/rust-lang/miri/

Also check out our project website:
https://plv.mpi-sws.org/rustbelt

22

https://play.rust-lang.org/
https://github.com/rust-lang/miri/
https://plv.mpi-sws.org/rustbelt


A dynamic model of Rust’s reference
checker ensures soundness of

type-based optimizations, even in the
presence of unsafe code.

Try Miri out yourself!
• Web version: https://play.rust-lang.org/ (“Tools”)
• Installation: rustup component add miri

• Miri website: https://github.com/rust-lang/miri/

Also check out our project website:
https://plv.mpi-sws.org/rustbelt

22

https://play.rust-lang.org/
https://github.com/rust-lang/miri/
https://plv.mpi-sws.org/rustbelt

