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Rust – Mozilla’s replacement for C/C++

Rust is the only language to provide. . .

• Low-level control à la C/C++
• Strong safety guarantees
• Modern, functional paradigms
• Industrial development and backing

Core ingredient: sophisticated type system
“mainstream”

Goal: exploit the unique
type information

available in Rust for
optimizations
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Rust’s reference type comes in two flavors:

1. Mutable reference: &mut T

(no aliasing)
2. Shared reference: &T

(no mutation by anyone)

Mutation
+

Aliasing

Rust’s reference types provide
strong aliasing information.

The optimizer should exploit that!

3



Rust’s reference type comes in two flavors:

1. Mutable reference: &mut T

(no aliasing)
2. Shared reference: &T

(no mutation by anyone)

Mutation
+

Aliasing

Rust’s reference types provide
strong aliasing information.

The optimizer should exploit that!

3



Aliasing guarantees: &mut T Examples

fn test_noalias(x: &mut i32, y: &mut i32) -> i32 {

// x, y cannot alias: they are unique pointers

*x = 42;

*y = 37;

return *x; // must return 42

}

escaped pointer

unknown code
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Aliasing guarantees: &T Examples

fn test_noalias_shared(x: &i32, y: &mut i32) -> i32 {

let val = *x;

// cannot mutate x: x points to immutable data

*y = 37;

return *x == val; // must return true

}

escaped pointer

unknown code with
access to x

These optimizations are the wildest
dreams of C compiler developers!

But there is a problem:

UNSAFE CODE!
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Unsafe code can access hazardous operations
that are banned in safe code.
unsafe fn hazardous(x: usize) -> i32 {

// *mut T is the type of raw (unsafe) pointers

let x_ptr = x as *mut i32;

return *x_ptr; // dereferencing an arbitrary integer

}

• Used for better performance, FFI,
implementing many standard library types
• Generally encapsulated by safe APIs
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1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer);

7: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // must return 42

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.
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Review: Undefined Behavior

Use of unsafe code imposes
proof obligations on the programmer:
No use of dangling/NULL pointers, no data races, . . .

Violation of proof obligation leads to
Undefined Behavior.

Image: dbeast32

Compilers can rely on these proof
obligations when

justifying optimizations

8

https://www.fiverr.com/dbeast32
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Stacked Borrows

Aliasing model defining which pointers
may be used to access memory,

ensuring

• uniqueness of mutable references, and
• immutability of shared references.

• Stacked Borrows is restrictive enough
to enable useful optimizations

formal proof
• Stacked Borrows is permissive enough

to enable programming
checked standard library test suite by
instrumenting the Rust interpreter Miri
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Stacked Borrows: Key Idea

Model proof obligations after
existing static “borrow” check

Borrow Checker Stacked Borrows
static dynamic

only safe code safe & unsafe code
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1: let mut l = 13;

2: let a = &mut l; // a *borrows* from l

3: let b = &mut *a; // b *reborrows* from a

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of `b` has ended

Conflicting use of a

(Re)borrows are organized
in a stack.
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Stacked Borrows ingredients

Pointer values carry a tag (PtrVal , Loc× N)
Example: (0x40, 1)

references (&mut T) are
identified by a tag

raw pointers (*mut T) fall
back to untagged

Every location in memory comes with an
associated stack (Mem , Loc �n−⇀ Byte× Stack)
...

0x40: 0xFE, [0: Unique, 1: Unique]
...

Reference tagged 1 borrows from reference
tagged 0

Untagged pointer(s) borrow(s) from reference
tagged 0

For every use of a reference or raw pointer:
• Extra proof obligation:
⇒ the tag must be in the stack
• Extra operational e�ect:
⇒ pop elements further up o� the stack

13
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1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.
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1: let mut l = 13;

2: let ALIAS = &mut l as *mut i32;

3: let x = &mut l; // was argument to test_unique

4: *x = 42;

5: unsafe { *ALIAS = 7; } // was unknown_function

6: println!("The answer is {}", *x);

Stack:It is undefined behavior to use a
pointer whose tag is not on the stack.
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1: let mut l = 13; // Tag: 0

2: let ALIAS = &mut l as *mut i32; // Tag: ⊥
3: let x = &mut l; // Tag: 1

4: *x = 42;

5: unsafe { *ALIAS = 7; }

6: println!("The answer is {}", *x);

Stack:It is undefined behavior to use a
pointer whose tag is not on the stack.
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Stacked Borrows

Aliasing model defining which pointers
may be used to access memory,

ensuring

• uniqueness of mutable references, and
• immutability of shared references.

• Stacked Borrows is restrictive enough
to enable useful optimizations

formal proof
• Stacked Borrows is permissive enough

to enable programming
checked standard library test suite by
instrumenting the Rust interpreter Miri
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Incomplete proof sketch

fn test_unique(x: &mut i32) -> i32 {

*x = 42;

unknown_function();

return *x; // must return 42

}

x’s tag is at the top of the stack

UB unless x’s
permission is

still in the stack

if unknown_function accesses this
memory, it will pop x’s tag o� the stack
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1: static mut ALIAS: *mut i32 = ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

ALIAS is a raw pointer (*mut T)

Overwrites *x with 7Plan: make this
Undefined Behavior

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]

Goal: rule out misbehaving programs

The Rust standard library and an increasing
number of user crates regularly have their test

suites checked by Miri.

So far, this uncovered 11 aliasing violations.
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What else?

What I didn’t talk about:

• Shared references & interior mutability
• Protectors (enable writes to be moved across

unknown code)

Future work:

• Concurrency
• Integrating Stacked Borrows into RustBelt
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A dynamic model of Rust’s reference
checker ensures soundness of

type-based optimizations, even in the
presence of unsafe code.

Try Miri out yourself!
• Web version: https://play.rust-lang.org/ (“Tools”)
• Installation: rustup component add miri

• Miri website: https://github.com/rust-lang/miri/

Also check out our project website:
https://plv.mpi-sws.org/rustbelt
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