
Research Statement

Ralf Jung

I am developing formal foundations and tools that establish machine-checked guarantees for real-world
software systems. To achieve this, my work spans all the way from foundational and deeply theoretical to applied,
from proving theorems to developing tools used by other researchers and software developers.

One key challenge in modern software is that fully utilizing today’s processors forces software to be highly
concurrent. Concurrent software requires the programmer to think about all the many ways in which parallel
computations could interact, making it hard to get right. At the same time, testing is often insufficient for finding
concurrency bugs, since bugs might arise only in specific circumstances that happen to arise in production but do
not occur during testing. I am working on formal methods that are able to exclude bugs in concurrent software.

Another important challenge in modern software is to reconcile safety with performance. Many languages
use type systems to guarantee the absence of entire classes of bugs. However, following the rules of the type
system regularly imposes run-time costs, e.g. through extra copies or bounds checks. In performance-critical code,
programmers can avoid that cost by using unsafe features, resulting in code that achieves safety for sophisticated
application-specific reasons that are difficult for the compiler to understand. Most type-safe languages have such
unsafe mechanisms, but these language features are largely ignored by type system formalizations. Rust is an
example of a language that uses unsafe features to great effect; I am using formal methods to capture why this
works and how we can formally reason about this situation.

Foundations for reasoning about modern software. Most modern software is both imperative and highly
concurrent, often leading to non-trivial interactions between multiple threads running in parallel while sharing
memory. Concurrent Separation Logic [19] (recently awarded with the Gödel prize) makes the tantalizing promise
that despite all these interactions, we should be able to verify such concurrent imperative programs locally,
one function at a time, without explicitly enumerating all the exponentially many possible executions of such a
program.

Over the past decade, many variants of concurrent separation logic were developed to prove correctness of
increasingly intricate concurrent algorithms and data structures. However, these logics typically came with some
built-in notion of how to reason about the interaction of multiple threads acting on shared state, e.g., they fix a
particular style of state-transition systems. This has led to the issue that a new logic has to be developed each time
a new interaction pattern has to be reasoned about.

My work on Iris [15, 13, 17, 14] aims to remedy this situation. The core design principle of Iris is to focus on a
small, expressive core logic that enables its user to derive new reasoning principles at a high level of abstraction. In
particular, the reasoning principles of many previous logics can be encoded inside Iris, unifying and consolidating
prior work. On top of that, Iris permits these proofs to be carried out in a machine-checked manner through its
implementation in the Coq Proof Assistant: it is the first separation logic to provide the usual user experience of
interactive proof assistants [18, 16].

Iris thus makes the challenging task of formally reasoning about concurrent software a lot more approachable.
This has led to a success story: Iris forms the foundation of more than 40 verification projects1 establishing a
wide range of formal guarantees about concurrent systems, ranging from functional correctness to type safety
to security properties such as non-interference. To name two examples, the Perennial project at MIT has built
an Iris-based toolchain for verifying Go code [2] (I have since joined this team to continue this exciting line of
research [3]), and BedRock Systems is using Iris for commercial verification of a hypervisor written in C++.

I have led the development of Iris from the start, combining the usual academic approach to collaboration (the
Iris papers cited above altogether have 11 authors) with my experience in how open-source projects are managed:
Iris employs standard open-source development practices such as public issue tracking, continuous integration,
and a chat room where users and developers meet. The Iris community helps maintain the Coq library and also
provides support to new users. This open-source spirit is a key ingredient to the continued success of Iris.

Foundations for Rust. Rust is a promising newcomer in the field of programming languages that is recently
gaining notable traction both in academia and industry: initiated at Mozilla and deployed in the Firefox browser,
Rust is now being used and developed by most of the “big tech” companies (e.g., Amazon, Google, Microsoft, and
Facebook). Its key selling point is combining type safety with a programming model that enables optimizing for

1See https://iris-project.org for a full list of publications using Iris.

1

https://iris-project.org


performance like one could in languages such as C or C++. Rust ensures memory safety and data-race freedom,
ruling out entire classes of bugs that plague C and C++ programs and regularly cause security vulnerabilities.

However, because a type checker will never be able to accept all correct programs, Rust also features unsafe
blocks that unlock non-type-safe operations. To avoid losing all the benefits of memory safety, these unsafe blocks
are generally safely encapsulated behind an API surface, i.e., the author of the library promises that well-typed
code cannot cause memory errors or data races by interacting with this library. This leads to a compositional
ecosystem of high-performance libraries that can be safely used to build reliable applications.

That is the claim, anyway. I have built RustBelt [11, 12] to formally verify these claims. RustBelt is the first
formal proof of correctness of the Rust type system that accounts for unsafe code. As part of this, I verified
the soundness of some of the most important data structures in the standard library, meaning I showed that the
unsafe code they use internally is safely encapsulated by their API: any well-typed code using these libraries is
still memory safe and data-race free. What makes these data structures particularly interesting and challenging
to verify is that they “violate” a key property of the Rust type system—that all data is shared or mutable, never
both—to provide safe access to shared mutable state.

Moreover, the approach RustBelt follows is compositional: even though the individual abstractions were
verified independently of each other, the safety result scales to safe programs that combine these abstractions in
arbitrary ways. The RustBelt proof is carried out using Iris and mechanized in the Coq Proof Assistant, crucially
relying on the versatility of Iris and its ability to define and verify new logical reasoning principles at a high level
of abstraction.

Our work has led to the discovery of a bug in Mutex [7] (implementing mutual exclusion and used for
lock-based concurrent programming), and follow-on work by collaborators that incorporates weak memory into
RustBelt [4] has found another bug in Rust’s atomically reference-counted pointer (Arc) [9]. Based on this
formal model, I have closely interacted with the Rust language team during the development of a new feature for
pinning [6, 8], a cornerstone of Rust’s growing support for asynchronous programming.

In follow-on work, we have established safety of GhostCell [23], a library that enables Rust programmers
to split permissions from data to enable new safe ways of using shared mutable state in Rust. This safety proof
was particularly challenging since GhostCell employs the type system in non-conventional ways by relying on
“branding”: type-level identifiers are used as purely logical indicators to track which permission belongs to which
data.

While this line of research is specific to Rust, our approach applies more generally: unsafe escape hatches simi-
lar to unsafe blocks exist in most programming languages (e.g., Obj.magic in OCaml, unsafePerformIO
in Haskell, the unsafe package in Go), but they are usually neglected in formal studies of these languages. This
means that the guarantees provided by these formalizations break down when a program uses unsafe features. The
RustBelt methodology shows how to overcome this problem. It can also be applied to reason about the interaction
of a type-safe language with a non-type-safe language, which is common in real systems (e.g., Java code calling
a C library). In fact, RustBelt has already inspired other researchers to apply a similar approach for verifying
OCaml code [21].

Specification and tooling for Rust. RustBelt has established that the Rust type system is useful to ensure
that programs run correctly. However, there is another benefit the type system could bring to the table: the
compiler should be able to exploit type information for performance. In particular, Rust’s reference types provide
very strong alias information, which otherwise would be hard or impossible for the compiler to obtain. If Rust
compilers can exploit that alias information, that could make Rust not just a safer language than C or C++ but
also one that can be optimized better.

Unfortunately, this story becomes complicated once we consider unsafe code. Unsafe Rust is to some extent
allowed to circumvent the language’s aliasing restrictions. How can we ensure that optimizations remain correct
even in the presence of unsafe code? My work on Stacked Borrows [10] provides a possible answer to this
question. Stacked Borrows specifies a precise set of rules that unsafe code has to follow, and we formally prove in
the Coq Proof Assistant that under this assumption some powerful optimizations are correct.

However, enabling optimizations is only one side of the coin. We must also take care that Stacked Borrows
is realistic, i.e., that it still permits programmers to do what they need to do with unsafe Rust. To this end, I
have implemented the Stacked Borrows rules in Miri, an interpreter for Rust, which means that Miri is able
to tell if real Rust code is compatible with the requirements of Stacked Borrows. This enabled me to define
Stacked Borrows in a way that the Rust standard library test suite is fully compliant. This work was done in
close collaboration with the Rust language team. The process of officially standardizing an aliasing model is still
ongoing, but in the mean time, Stacked Borrows has become the de-facto baseline aliasing model in Rust.

2



In fact, I have turned Miri into a tool that can check Rust code for compliance not only with Stacked Borrows
but also with many other requirements that Rust imposes on unsafe code (e.g., not performing out-of-bounds
memory accesses). It has become a standard tool in the Rust community: Miri is available as part of the official
distribution of the nightly Rust compiler, developers use Miri in their continuous integration to gain confidence in
the correctness of their unsafe code [1], and Miri has also been integrated into the Rust Playground,2 enabling
Rust programmers to test small snippets of code directly in the browser.

Future research
In my past research, I developed a suite of influential and groundbreaking tools for reasoning modularly about
the correctness of complex concurrent programs (Iris) and the safety of Rust, a popular and actively developed
systems programming language (RustBelt, Miri, Stacked Borrows). My plans for future work build on that
foundation. Iris has already been demonstrated to be applicable to a wide range of problem domains, so I aim to
use Iris as a stepping stone for branching off into new research directions. On the Rust side, my existing expertise
and my connections within the Rust community provide a unique opportunity to identify and tackle challenging
research problems that will impact the future development of the language.

Distributed systems. Distributed systems (i.e., services that are distributed across many machines in a network)
form the backbone of our internet infrastructure. They are also notoriously hard to get right: networks are
unreliable, so distributed systems have to contend with network messages being lost, reordered, or duplicated.
Testing all possible cases is not usually feasible, making verification a core tool for ensuring reliability of
distributed systems. This becomes even more true when one considers distributed systems that also exploit
per-machine concurrency, as is often the case today.

In ongoing work, I am applying Iris to the verification of distributed systems. The goal is to verify distributed
systems locally, one component at a time. This thinking in terms of reusable and replaceable components reflects
the way distributed systems are typically built, but is not yet applied in existing high-profile verification efforts
(such as Verdi [22] and IronFleet [5]) which have focused on establishing strong correctness properties of complete
systems. By using a powerful concurrent separation logic, we can state and prove specifications of distributed
systems components, and we can compose specifications of these components to verify a complete distributed
system.

Another critical aspect of realistic distributed systems is fault tolerance: recovering gracefully when nodes of
the network crash or become inaccessible due to network outages. However, the state of the art in distributed
systems verification largely ignores the difficulties that arise when a node recovers and rejoins the system based on
whatever durable state it still has on disk. In the MIT work on Perennial, Iris has already been shown expressive
enough to reason about crash recovery in concurrent programs running on a single machine; in future work, I will
investigate how to scale this approach up to account for crash recovery in a distributed system. The key challenge
is that unlike in Perennial, distributed systems have to consider partial failures, where some machines crash and
reboot while others keep running without even knowing that a failure occurred.

Verifying large-scale realistic systems will also require innovation within Iris itself. While Iris comes with
a carefully engineered “proof mode” that provides excellent support for doing machine-checked interactive
separation-logic proofs in Coq, Iris proofs nonetheless require a great deal of manual effort. I believe that
improving automation for Iris proofs will be essential for deploying it in the verification of large-scale systems,
and that there are clear opportunities for improvement. This will be challenging because most existing approaches
to automation in proof assistants are geared towards standard (non-separation) logics, and thus cannot be applied
to automating Iris proofs.

Finally, there are some more fundamental theoretical challenges that I plan to work on: distributed systems are
particularly prone to liveness issues, where the system at some point “locks up” and is unable to complete further
requests. Most verification efforts, including Iris, only prove that requests do not receive incorrect replies; such a
proof still leaves the possibility of liveness bugs if no reply is sent at all. Prior work on IronFleet has managed to
establish liveness guarantees at the whole-system granularity. The idea is that with Iris, we can separately verify
reusable components and still show liveness of the whole system when the components are put together. This will
require developing new techniques for expressing liveness guarantees as part of library specifications.

Towards a Rust Standard. Any attempt to formally reason about programs requires a solid specification of the
language they are written in. However, such a specification does not yet exist for Rust (so RustBelt had to make

2The playground can be found at https://play.rust-lang.org/.

3

https://play.rust-lang.org/


do with an approximation). Developing a Rust specification is thus an important open problem—notwithstanding
Stacked Borrows, which only makes a first stab at specifying one particular aspect of the language semantics.

At the same time, it is a major challenge: like C and C++, Rust combines a low-level machine model with
aggressive optimizations that make assumptions the programmer needs to be aware of: when writing unsafe
Rust, the programmer has to guarantee that the program does not have undefined behavior. However, determining
if a given program has undefined behavior is very tricky, and even the hundreds of pages of specification that C
and C++ come with are often not enough to answer that question. This affects both programmers that accidentally
write code with undefined behavior, and compiler writers that accidentally make inconsistent assumptions about
undefined behavior in different parts of the compiler, leading to incorrect compilation results.

I am planning to use Miri as a key tool in developing a standard for Rust that avoids this kind of ambiguity.
Specifying undefined behavior by means of an interpreter like Miri has several key advantages over a natural-
language specification: first of all, it is not hard to extract a formal mathematical specification from the interpreter—
while at the same time, interpreter source code is much more accessible to programmers than formal specifications,
making it easier to involve the Rust community in the discussion of what should and should not be undefined
behavior in Rust. Secondly, we can avoid the pitfall of putting unrealistic requirements on unsafe code by simply
running Miri on a corpus of unsafe code and testing if any of that code violates the requirements we want to
impose on unsafe Rust authors. This is crucial to raise acceptance of an eventual official specification of undefined
behavior: if there is a common sentiment that avoiding undefined behavior is near impossible and almost all
programs have undefined behavior anyway (and that sentiment is not uncommon in the C/C++ communities), then
it becomes very hard to convince people to rid their code of undefined behavior—which would entirely subvert
any attempt to put Rust’s safety story on solid footing!

I am already in contact with the Rust language team, as well as several teams in academia and industry that are
interested in Rust verification, on the topic of developing a specification. I plan to use my experience with Stacked
Borrows and my connections with these key stakeholders to work towards making the official specification of
Rust precise, accessible, and realistic.

Low-barrier safety proofs for unsafe code. The RustBelt project leverages Iris’s support for modular reasoning
about low-level concurrent code to achieve a landmark result: an iron-clad guarantee of safety for a large subset
of the Rust programming language, as well as for many Rust libraries which internally rely on unsafe features of
the language. However, RustBelt is just the first step in a long-term research program with the goal of enabling
programmers to ensure that their unsafe code is upholding Rust’s safety standards.

In particular, in the version of RustBelt in my thesis, some aspects of Rust were modeled in an idealized
manner or not at all. Notably, RustBelt does not account for Rust’s trait mechanism, which is used pervasively
in production code. Some unsafely implemented libraries crucially rely on there being no more than one
implementation of a trait for any given type, or they may even rely on the absence of an implementation. This
leads to a subtle interplay of reasoning about unsafe code and trait implementations, making a proof of correctness
for them even more challenging than for the libraries covered by RustBelt so far. Other missing features of Rust
include automatic destructors (which are challenging when considering recursive data structures) and pinning
(which enables unsafe code to rely on the fixed location of some data in memory). I expect that establishing the
soundness of these crucial features will require significant extensions to the RustBelt framework.

That said, the biggest hurdle is the effort required to perform a safety proof for an unsafely implemented
library. In the RustBelt part of my thesis, I proved safety of a number of representative Rust libraries. However,
these proofs all required significant manual input, both to translate the library into an Iris proof obligation and
to make the resulting proof of that obligation go through. To achieve maximum impact on Rust programming
practice, I plan to lower the barrier of entry to verification of unsafe code, by building automatic tool support
to enable developers of Rust libraries to verify the safety of those libraries themselves. This is inspired by
RefinedC [20], an Iris-based tool for automated, annotation-based verification of real C code.

One key advantage in unsafe code verification is that the types programmers put on the public API of their
library already determine the specification they need to satisfy. However, those specifications are often a lot more
complicated than what automated tools can handle today (in particular when they involve the Rust mechanisms
of borrowing and lifetimes), so this project will require breakthrough results in automated program verification.
For particularly tricky libraries, I expect some guidance from the programmer will be crucial; this requires new
approaches to appropriately combine interactive and automated verification strategies without expecting the user
to be a verification expert. Such an automatic tool will allow us to establish machine-checked safety guarantees
for a much larger subset of real-world Rust programs, thus significantly improving the overall safety of the Rust
ecosystem. Putting such a tool into the hands of programmers would make unsafe Rust just as safe as the rest of
Rust, finally fully realizing the dream of safe systems programming in practice.

4



Summary
The modern world is full of complicated software systems that are prone to bugs, sometimes with severe
consequences. Verification can ensure the absence of bugs even in cases where testing is infeasible since there are
too many ways the system can behave. At the same time, real-world systems are typically not monolithic; they
consist of a multitude of components developed by separate teams. I work on developing formal foundations
that enable verification to follow the component-wise structure of large-scale software systems, and on tools for
verification researchers and software engineers that bring those foundations to fruition. My general research
approach could be described as striving for elegance and simplicity in the theoretical foundations, and then
carrying those foundational insights all the way to the real world in order to attack problems that matter in
practice.

References
[1] James Bornholt et al. “Using lightweight formal methods to validate a key-value storage node in Amazon

S3”. In: SOSP. ACM, 2021, pp. 836–850. DOI: 10.1145/3477132.3483540.

[2] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. “Verifying concurrent, crash-
safe systems with Perennial”. In: SOSP. ACM, 2019, pp. 243–258. DOI: 10.1145/3341301.3359632.

[3] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung, M. Frans Kaashoek, and Nickolai Zeldovich.
“Gojournal: A verified, concurrent, crash-safe journaling system”. In: OSDI. USENIX Association, 2021.
URL: https://www.usenix.org/system/files/osdi21-chajed.pdf.

[4] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. “RustBelt meets relaxed
memory”. In: PACMPL 4.POPL (2020), 34:1–34:29. DOI: 10.1145/3371102.

[5] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath
T. V. Setty, and Brian Zill. “Ironfleet: Proving practical distributed systems correct”. In: SOSP. ACM, 2015,
pp. 1–17. DOI: 10.1145/2815400.2815428.

[6] Ralf Jung. “A formal look at pinning”. Blog post. 2018. URL: https://www.ralfj.de/blog/
2018/04/05/a-formal-look-at-pinning.html.

[7] Ralf Jung. “How MutexGuard was Sync when it should not have been”. Blog post. 2017. URL: https:
//www.ralfj.de/blog/2017/06/09/mutexguard-sync.html.

[8] Ralf Jung. “Safe intrusive collections with pinning”. Blog post. 2018. URL: https://www.ralfj.
de/blog/2018/04/10/safe-intrusive-collections-with-pinning.html.

[9] Ralf Jung. “The tale of a bug in Arc: Synchronization and data races”. Blog post. 2018. URL: https:
//www.ralfj.de/blog/2018/07/13/arc-synchronization.html.

[10] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. “Stacked Borrows: An aliasing model for
Rust”. In: PACMPL 4.POPL (2020). DOI: 10.1145/3371109.

[11] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “RustBelt: Securing the founda-
tions of the Rust programming language”. In: PACMPL 2.POPL (2018). DOI: 10.1145/3158154.

[12] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “Safe systems programming in
Rust: The promise and the challenge”. In: CACM (2021). DOI: 10.1145/3418295.

[13] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. “Higher-order ghost state”. In: ICFP.
2016. DOI: 10.1145/2951913.2951943.

[14] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. “Iris
from the ground up: A modular foundation for higher-order concurrent separation logic”. In: Journal of
Functional Programming 28 (2018). DOI: 10.1017/S0956796818000151.

[15] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek
Dreyer. “Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning”. In: POPL. 2015.
DOI: 10.1145/2676726.2676980.

[16] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany,
Arthur Charguéraud, and Derek Dreyer. “MoSeL: A general, extensible modal framework for interactive
proofs in separation logic”. In: PACMPL 2.ICFP (2018). DOI: 10.1145/3236772.

5

https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3341301.3359632
https://www.usenix.org/system/files/osdi21-chajed.pdf
https://doi.org/10.1145/3371102
https://doi.org/10.1145/2815400.2815428
https://www.ralfj.de/blog/2018/04/05/a-formal-look-at-pinning.html
https://www.ralfj.de/blog/2018/04/05/a-formal-look-at-pinning.html
https://www.ralfj.de/blog/2017/06/09/mutexguard-sync.html
https://www.ralfj.de/blog/2017/06/09/mutexguard-sync.html
https://www.ralfj.de/blog/2018/04/10/safe-intrusive-collections-with-pinning.html
https://www.ralfj.de/blog/2018/04/10/safe-intrusive-collections-with-pinning.html
https://www.ralfj.de/blog/2018/07/13/arc-synchronization.html
https://www.ralfj.de/blog/2018/07/13/arc-synchronization.html
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3418295
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3236772


[17] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal.
“The essence of higher-order concurrent separation logic”. In: ESOP. Vol. 10201. LNCS. 2017. DOI:
10.1007/978-3-662-54434-1_26.

[18] Robbert Krebbers, Amin Timany, and Lars Birkedal. “Interactive proofs in higher-order concurrent
separation logic”. In: POPL. 2017. DOI: 10.1145/3093333.3009855.

[19] Peter W. O’Hearn. “Resources, concurrency, and local reasoning”. In: TCS 375.1 (2007), pp. 271–307.
DOI: 10.1016/j.tcs.2006.12.035.

[20] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak
Garg. “Refinedc: Automating the foundational verification of C code with refined ownership types”. In:
PLDI. ACM, 2021, pp. 158–174. DOI: 10.1145/3453483.3454036.

[21] Matthieu Sozeau. “PhD position on certified extraction in Nantes”. 2020. URL: https : / / coq .
discourse.group/t/phd-position-on-certified-extraction-in-nantes/1044.

[22] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas
E. Anderson. “Verdi: A framework for implementing and formally verifying distributed systems”. In: PLDI.
ACM, 2015, pp. 357–368. DOI: 10.1145/2737924.2737958.

[23] Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. “GhostCell: Separating permissions
from data in Rust”. In: PACMPL 2.ICFP (2021). DOI: 10.1145/3473597.

6

https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3093333.3009855
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/3453483.3454036
https://coq.discourse.group/t/phd-position-on-certified-extraction-in-nantes/1044
https://coq.discourse.group/t/phd-position-on-certified-extraction-in-nantes/1044
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/3473597

