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• This talk is about Iris, a logic we
want to apply to verify the safety of
Rust.

• The key technical contribution is to
show how to extend Iris with
higher-order ghost state.
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The Rust Programming Language

Java
Go
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. . .

C
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. . .

Focus on safety Focus on control
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The Rust Programming Language

• Higher-order functions
• Polymorphism / Generics
• Traits (typeclasses +
associated types)

• Concurrency
• Control over memory
allocation and data layout
• Linear (ownership-based)
type system with regions &
region inference

Goal of RustBelt project:
Prove safety of language and its

standard library.
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Picking the right tool

Wanted:

Higher-order
concurrent

program logic
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Complex Foundations

In previous work:
Let’s try to make it simple(r).

With Iris, we can derive the more
complex reasoning principles from the

simple foundations.
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simple mechanisms:

• Invariants
• User-defined ghost state
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Ghost State

Ghost state

PCM composition

Auxiliary program variables

Disjoint union

(“ghost heap”)
Tokens / Capabilities

No composition

Monotone state

Maximum

(e.g., trace information)

User-defined ghost state:
Pick your favorite!

Common structure of ghost state:
Partial commutative monoid (PCM).

A PCM is a set M with an associative,
commutative composition operation.
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Ghost State

Ghost state PCM composition
Auxiliary program variables Disjoint union
(“ghost heap”)

Tokens / Capabilities No composition
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Iris: Resting on Simple Foundations

Invariants

:

{.I ∗ P} e {.I ∗ Q}E atomic(e)
I ι ` {P} e {v. Q}E]{ι}

Ghost state (any partial commutative monoid)

:

∀af . a # af ⇒ b # af

a V b
a · b = c
a ∗ b ⇔ c

a ⇒ V(a)

For specifying some synchronization primitives,
these foundations are not enough!

Any PCM can be lifted to a CMRA, so all
the old reasoning remains valid.
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Contributions

• Motivate why higher-order ghost state is
useful.
• Demonstrate how to extend Iris to support
higher-order ghost state.

14



Contributions

• Motivate why higher-order ghost state is
useful.
• Demonstrate how to extend Iris to support
higher-order ghost state.

14



Contributions

• Motivate why higher-order ghost state is
useful.
• Demonstrate how to extend Iris to support
higher-order ghost state.

14



Contributions

• Motivate why higher-order ghost state is
useful.
• Demonstrate how to extend Iris to support
higher-order ghost state.

14



Barrier

let b = newbarrier() in

[computation];

// Have: P ∗ Q

signal(b)
wait(b);

{True}

wait(b);

// Have: P // Have: Q

[use result [use result
of computation] of computation]

Receive capability is
split.

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

recv(b,P ∗ Q) V recv(b,P) ∗ recv(b,Q)
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Barrier: A little history

• Spec first proposed
by Mike Dodds
et al. (2011)

• First proof later
found to be flawed
• Fixed using named
propositions
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Named Propositions

∀P. TrueV ∃γ. γ 7→ P

∀γ,P,Q. (γ 7→ P ∗ γ 7→ Q)⇒ (P⇔ Q)

Gives a fresh name γ to P.

Agreement about proposition
named γ.

Derive named propositions from
lower-level principles:

Build named propositions on
ghost state.
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Higher-Order Ghost State

User-defined ghost state: PCM M
referring to Iris assertions

Logic
Iris(M)

Iris 1.0 could not handle
higher-order ghost state.
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Contributions

• Motivate why higher-order ghost state is
useful.
• Demonstrate how to extend Iris to support
higher-order ghost state.
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Higher-Order Ghost State: Technicalities

User-defined ghost state M
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Logic
Iris(M)
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We got a problem with our
ghost state.

Who we gonna call?

User-defined ghost state M
referring to Iris assertions

Logic
Iris(M)
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Higher-Order Ghost State: Technicalities

Step-Indexing

• Introduced 2001 by Appel
and McAllester

• Used to solve circularities
in models of higher-order
state

User-defined ghost state M
referring to Iris assertions

Logic
Iris(M)
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Higher-Order Ghost State: Technicalities

• Equip PCMs with a
“step-indexing structure”.

→ CMRA

• Let user define a functor
yielding a CMRA.

• Tie the knot by taking a
fixed-point.
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Named Propositions

∀P. TrueV ∃γ. γ 7→ P

∀γ,P,Q. (γ 7→ P ∗ γ 7→ Q)⇒ .(P⇔ Q)

Gives a fresh name γ to P.

Agreement about proposition
named γ only holds at the next
step-index.

Derive named propositions from
lower-level principles:

Build named propositions on
ghost state.
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Barrier
{True}

let b = newbarrier() in

{send(b,P ∗ Q) ∗ recv(b,P ∗ Q)}

[computation];

// Have: P ∗ Q

{
P ∗ Q ∗
send(b,P ∗ Q)

}
{recv(b,P)} signal(b) {recv(b,Q)}
wait(b); {True} wait(b);

// Have: P // Have: Q

{P} {Q}
[use result [use result
of computation] of computation]

Receive capability is
split.

P Q

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

recv(b,P ∗ Q) V recv(b,P) ∗ recv(b,Q)
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Iris: Resting on Simple Foundations

Invariants:

{.I ∗ P} e {.I ∗ Q}E atomic(e)
I ι ` {P} e {v. Q}E]{ι}

Ghost state (any CMRA):

∀af ,n. a #n af ⇒ b #n af

a V b
a · b = c
a ∗ b ⇔ c

a ⇒ V(a)

For specifying some synchronization primitives,
these foundations are not enough!

Any PCM can be lifted to a CMRA, so all
the old reasoning remains valid.
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What else?

• Other examples of higher-order ghost state

• How to simplify the model with CMRAs
• Coq formalization

Ongoing work:

• Encode invariants using higher-order ghost
state
• Applying named propositions in the safety
proof of Rust

Thank you for your attention!
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