
Higher-Order Ghost State

Ralf Jung, Robbert Krebbers, Lars Birkedal, Derek Dreyer
ICFP 2016 in Nara, Japan
Max Planck Institute for Software Systems (MPI-SWS), Aarhus University

1



• This talk is about Iris, a logic we
want to apply to verify the safety of
Rust.

• The key technical contribution is to
show how to extend Iris with
higher-order ghost state.

2



• This talk is about Iris, a logic we
want to apply to verify the safety of
Rust.
• The key technical contribution is to
show how to extend Iris with
higher-order ghost state.

2



• This talk is about Iris, a logic we
want to apply to verify the safety of
Rust.
• The key technical contribution is to
show how to extend Iris with
higher-order ghost state.

2



The Rust Programming Language

Java
Go
Haskell
. . .

C
C++
Assembly
. . .

Focus on safety Focus on control

3



The Rust Programming Language

Java
Go
Haskell
. . .

C
C++
Assembly
. . .

Focus on safety

Focus on control

3



The Rust Programming Language

Java
Go
Haskell
. . .

C
C++
Assembly
. . .

Focus on safety Focus on control

3



The Rust Programming Language

• Higher-order functions
• Polymorphism / Generics
• Traits (typeclasses +
associated types)

• Concurrency
• Control over memory
allocation and data layout
• Linear (ownership-based)
type system with regions &
region inference

Goal of RustBelt project:
Prove safety of language and its

standard library.

4



The Rust Programming Language

• Higher-order functions
• Polymorphism / Generics
• Traits (typeclasses +
associated types)

• Concurrency

• Control over memory
allocation and data layout

• Linear (ownership-based)
type system with regions &
region inference

Goal of RustBelt project:
Prove safety of language and its

standard library.

4



The Rust Programming Language

• Higher-order functions
• Polymorphism / Generics
• Traits (typeclasses +
associated types)

• Concurrency

• Control over memory
allocation and data layout
• Linear (ownership-based)
type system with regions &
region inference

Goal of RustBelt project:
Prove safety of language and its

standard library.

4



The Rust Programming Language

• Higher-order functions
• Polymorphism / Generics
• Traits (typeclasses +
associated types)
• Concurrency
• Control over memory
allocation and data layout
• Linear (ownership-based)
type system with regions &
region inference

Goal of RustBelt project:
Prove safety of language and its

standard library.

4



The Rust Programming Language

• Higher-order functions
• Polymorphism / Generics
• Traits (typeclasses +
associated types)
• Concurrency
• Control over memory
allocation and data layout
• Linear (ownership-based)
type system with regions &
region inference

Goal of RustBelt project:
Prove safety of language and its

standard library.

4



Picking the right tool

Wanted:

Higher-order
concurrent

program logic

5



Picking the right tool

Wanted:

Higher-order
concurrent

separation logic

5



Picking the right tool

Wanted:

Higher-order

concurrent
separation logic

5



Picking the right tool

Wanted:

Higher-order
concurrent

separation logic

5



Picking the right tool

Wanted:

Higher-order
concurrent

separation logic

5



Concurrency Logics

6



Concurrency Logics

6



Complex Foundations

In previous work:
Let’s try to make it simple(r).

With Iris, we can derive the more
complex reasoning principles from the

simple foundations.

7



Complex Foundations

In previous work:
Let’s try to make it simple(r).

With Iris, we can derive the more
complex reasoning principles from the

simple foundations.

7



Iris (POPL 2015) is built on two
simple mechanisms:

• Invariants
• User-defined ghost state

8



Iris (POPL 2015) is built on two
simple mechanisms:

• Invariants
• User-defined ghost state

8



Ghost State

Ghost state

PCM composition

Auxiliary program variables

Disjoint union

(“ghost heap”)
Tokens / Capabilities

No composition

Monotone state

Maximum

(e.g., trace information)

User-defined ghost state:
Pick your favorite!

Common structure of ghost state:
Partial commutative monoid (PCM).

A PCM is a set M with an associative,
commutative composition operation.

9



Ghost State

Ghost state

PCM composition

Auxiliary program variables

Disjoint union

(“ghost heap”)
Tokens / Capabilities

No composition

Monotone state

Maximum

(e.g., trace information)

User-defined ghost state:
Pick your favorite!

Common structure of ghost state:
Partial commutative monoid (PCM).

A PCM is a set M with an associative,
commutative composition operation.

9



Ghost State

Ghost state

PCM composition

Auxiliary program variables

Disjoint union

(“ghost heap”)
Tokens / Capabilities

No composition

Monotone state

Maximum

(e.g., trace information)

User-defined ghost state:
Pick your favorite!

Common structure of ghost state:
Partial commutative monoid (PCM).

A PCM is a set M with an associative,
commutative composition operation.

9



Ghost State

Ghost state

PCM composition

Auxiliary program variables

Disjoint union

(“ghost heap”)
Tokens / Capabilities

No composition

Monotone state

Maximum

(e.g., trace information)

User-defined ghost state:
Pick your favorite!

Common structure of ghost state:
Partial commutative monoid (PCM).

A PCM is a set M with an associative,
commutative composition operation.

9



Ghost State

Ghost state PCM composition
Auxiliary program variables Disjoint union
(“ghost heap”)

Tokens / Capabilities No composition
Monotone state Maximum
(e.g., trace information)

User-defined ghost state:
Pick your favorite!

Common structure of ghost state:
Partial commutative monoid (PCM).

A PCM is a set M with an associative,
commutative composition operation.

9



Iris: Resting on Simple Foundations

Invariants

:

{.I ∗ P} e {.I ∗ Q}E atomic(e)
I ι ` {P} e {v. Q}E]{ι}

Ghost state (any partial commutative monoid)

:

∀af . a # af ⇒ b # af

a V b
a · b = c
a ∗ b ⇔ c

a ⇒ V(a)

For specifying some synchronization primitives,
these foundations are not enough!

Any PCM can be lifted to a CMRA, so all
the old reasoning remains valid.

10



Iris: Resting on Simple Foundations

Invariants:

{.I ∗ P} e {.I ∗ Q}E atomic(e)
I ι ` {P} e {v. Q}E]{ι}

Ghost state (any partial commutative monoid):

∀af . a # af ⇒ b # af

a V b
a · b = c
a ∗ b ⇔ c

a ⇒ V(a)

For specifying some synchronization primitives,
these foundations are not enough!

Any PCM can be lifted to a CMRA, so all
the old reasoning remains valid.

10



Complex Foundations

In previous work:
Let’s try to make it simple(r).

With Iris, we can derive the more
complex reasoning principles from the

simple foundations.

11



Iris: Resting on Simple Foundations

Invariants:

{.I ∗ P} e {.I ∗ Q}E atomic(e)
I ι ` {P} e {v. Q}E]{ι}

Ghost state (any partial commutative monoid):

∀af . a # af ⇒ b # af

a V b
a · b = c
a ∗ b ⇔ c

a ⇒ V(a)

For specifying some synchronization primitives,
these foundations are not enough!

Any PCM can be lifted to a CMRA, so all
the old reasoning remains valid.

12



First-Order Ghost State

User-defined ghost state: PCM M

Logic
Iris(M)

Iris 1.0 could not handle
higher-order ghost state.

13



First-Order Ghost State

User-defined ghost state: PCM M

Logic
Iris(M)

Iris 1.0 could not handle
higher-order ghost state.

13



Higher-Order Ghost State

User-defined ghost state: PCM M
referring to Iris assertions

Logic
Iris(M)

Iris 1.0 could not handle
higher-order ghost state.

13



Higher-Order Ghost State

User-defined ghost state: PCM M
referring to Iris assertions

Logic
Iris(M)

Iris 1.0 could not handle
higher-order ghost state.

13



Contributions

• Motivate why higher-order ghost state is
useful.
• Demonstrate how to extend Iris to support
higher-order ghost state.

14



Contributions

• Motivate why higher-order ghost state is
useful.
• Demonstrate how to extend Iris to support
higher-order ghost state.

14



Contributions

• Motivate why higher-order ghost state is
useful.
• Demonstrate how to extend Iris to support
higher-order ghost state.

14



Contributions

• Motivate why higher-order ghost state is
useful.
• Demonstrate how to extend Iris to support
higher-order ghost state.

14



Barrier

let b = newbarrier() in

[computation];

// Have: P ∗ Q

signal(b)
wait(b);

{True}

wait(b);

// Have: P // Have: Q

[use result [use result
of computation] of computation]

Receive capability is
split.

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

recv(b,P ∗ Q) V recv(b,P) ∗ recv(b,Q)

15



Barrier

let b = newbarrier() in

[computation];

// Have: P ∗ Q

signal(b)
wait(b);

{True}

wait(b);

// Have: P // Have: Q

[use result [use result
of computation] of computation]

Receive capability is
split.

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

recv(b,P ∗ Q) V recv(b,P) ∗ recv(b,Q)

15



Barrier (simple version)

let b = newbarrier() in

[computation];

// x 7→ ? is initialized

signal(b)

{True}

wait(b);

// x 7→ ? can be used

[use result
of computation]

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

Capability to send x 7→ ?.

Capability to receive x 7→ ?.

16



Barrier (simple version)

let b = newbarrier() in

[computation];
// x 7→ ? is initialized
signal(b)

{True}

wait(b);
// x 7→ ? can be used
[use result
of computation]

x 7→ ?

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

Capability to send x 7→ ?.

Capability to receive x 7→ ?.

16



Barrier (simple version)

let b = newbarrier() in

[computation];
// P is established
signal(b)

{True}

wait(b);
// P can be used
[use result
of computation]

P

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

Capability to send P.

Capability to receive P.

16



Barrier (simple version)

let b = newbarrier() in

[computation];
// P is established
signal(b)

{True}

wait(b);
// P can be used
[use result
of computation]

P

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

Capability to send P.

Capability to receive P.

16



Barrier (simple version)

let b = newbarrier() in

[computation];
// P is established
signal(b)

{True}

wait(b);
// P can be used
[use result
of computation]

P

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

Capability to send P.

Capability to receive P.

16



Barrier

let b = newbarrier() in

[computation];

// Have: P ∗ Q

signal(b)
wait(b);

{True}

wait(b);

// Have: P // Have: Q

[use result [use result
of computation] of computation]

Receive capability is
split.

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

recv(b,P ∗ Q) V recv(b,P) ∗ recv(b,Q)

17



Barrier

let b = newbarrier() in

[computation];
// Have: P ∗ Q
signal(b)

wait(b);

{True}

wait(b);
// Have: P // Have: Q
[use result [use result
of computation] of computation]

Receive capability is
split.

P Q

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

recv(b,P ∗ Q) V recv(b,P) ∗ recv(b,Q)

17



Barrier

let b = newbarrier() in

[computation];
// Have: P ∗ Q
signal(b)

wait(b);

{True}

wait(b);
// Have: P // Have: Q
[use result [use result
of computation] of computation]

Receive capability is
split.

P Q

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

recv(b,P ∗ Q) V recv(b,P) ∗ recv(b,Q)

17



Barrier: A little history

• Spec first proposed
by Mike Dodds
et al. (2011)

• First proof later
found to be flawed
• Fixed using named
propositions

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

recv(b,P ∗ Q) V
recv(b,P) ∗ recv(b,Q)

18



Barrier: A little history

• Spec first proposed
by Mike Dodds
et al. (2011)
• First proof later
found to be flawed
• Fixed using named
propositions

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

recv(b,P ∗ Q) V
recv(b,P) ∗ recv(b,Q)

18



Named Propositions

∀P. TrueV ∃γ. γ 7→ P

∀γ,P,Q. (γ 7→ P ∗ γ 7→ Q)⇒ (P⇔ Q)

Gives a fresh name γ to P.

Agreement about proposition
named γ.

Derive named propositions from
lower-level principles:

Build named propositions on
ghost state.

19



Named Propositions

∀P. TrueV ∃γ. γ 7→ P

∀γ,P,Q. (γ 7→ P ∗ γ 7→ Q)⇒ (P⇔ Q)

Gives a fresh name γ to P.
P does not have to hold!

Agreement about proposition
named γ.

Derive named propositions from
lower-level principles:

Build named propositions on
ghost state.

19



Named Propositions

∀P. TrueV ∃γ. γ 7→ P

∀γ,P,Q. (γ 7→ P ∗ γ 7→ Q)⇒ (P⇔ Q)

Gives a fresh name γ to P.
P does not have to hold!

Agreement about proposition
named γ.

Derive named propositions from
lower-level principles:

Build named propositions on
ghost state.

19



Named Propositions

∀P. TrueV ∃γ. γ 7→ P

∀γ,P,Q. (γ 7→ P ∗ γ 7→ Q)⇒ (P⇔ Q)

Gives a fresh name γ to P.
P does not have to hold!

Agreement about proposition
named γ.

Derive named propositions from
lower-level principles:

Build named propositions on
ghost state.

19



Named Propositions

∀P. TrueV ∃γ. γ 7→ P

∀γ,P,Q. (γ 7→ P ∗ γ 7→ Q)⇒ (P⇔ Q)

Gives a fresh name γ to P.
P does not have to hold!

Agreement about proposition
named γ.

Derive named propositions from
lower-level principles:

Build named propositions on
ghost state.

19



Named Propositions

∀P. TrueV ∃γ. γ 7→ P

∀γ,P,Q. (γ 7→ P ∗ γ 7→ Q)⇒ (P⇔ Q)

Gives a fresh name γ to P.
Allocates new slot in “table”.

Agreement about row γ of the
“table”.

Derive named propositions from
lower-level principles:

Build named propositions on
ghost state.

19



Higher-Order Ghost State

User-defined ghost state: PCM M
referring to Iris assertions

Logic
Iris(M)

Iris 1.0 could not handle
higher-order ghost state.

20



Contributions

• Motivate why higher-order ghost state is
useful.
• Demonstrate how to extend Iris to support
higher-order ghost state.

21



Higher-Order Ghost State: Technicalities

User-defined ghost state M
referring to Iris assertions

Logic
Iris(M)

22



Higher-Order Ghost State: Technicalities

We got a problem with our
ghost state.

Who we gonna call?

User-defined ghost state M
referring to Iris assertions

Logic
Iris(M)

22



Higher-Order Ghost State: Technicalities

User-defined ghost state M
referring to Iris assertions

Logic
Iris(M)

22



Higher-Order Ghost State: Technicalities

Step-Indexing

• Introduced 2001 by Appel
and McAllester

• Used to solve circularities
in models of higher-order
state

User-defined ghost state M
referring to Iris assertions

Logic
Iris(M)

22



Higher-Order Ghost State: Technicalities

Step-Indexing
• Introduced 2001 by Appel
and McAllester

• Used to solve circularities
in models of higher-order
state

User-defined ghost state M
referring to Iris assertions

Logic
Iris(M)

22



Higher-Order Ghost State: Technicalities

• Equip PCMs with a
“step-indexing structure”.

→ CMRA

• Let user define a functor
yielding a CMRA.

• Tie the knot by taking a
fixed-point.

User-defined ghost state M
referring to Iris assertions

Logic
Iris(M)

22



Higher-Order Ghost State: Technicalities

• Equip PCMs with a
“step-indexing structure”.
→ CMRA

• Let user define a functor
yielding a CMRA.

• Tie the knot by taking a
fixed-point.

User-defined ghost state M
referring to Iris assertions

Logic
Iris(M)

22



Higher-Order Ghost State: Technicalities

• Equip PCMs with a
“step-indexing structure”.
→ CMRA

• Let user define a functor
yielding a CMRA.

• Tie the knot by taking a
fixed-point.

User-defined ghost state M
referring to Iris assertions

Logic
Iris(M)

22



Higher-Order Ghost State: Technicalities

• Equip PCMs with a
“step-indexing structure”.
→ CMRA

• Let user define a functor
yielding a CMRA.

• Tie the knot by taking a
fixed-point.

User-defined ghost state M
referring to Iris assertions

Logic
Iris(M)

22



Higher-Order Ghost State: Technicalities

• Equip PCMs with a
“step-indexing structure”.
→ CMRA

• Let user define a functor
yielding a CMRA.

• Tie the knot by taking a
fixed-point.

User-defined ghost state M
referring to Iris assertions

Logic
Iris(M)

22



Named Propositions

∀P. TrueV ∃γ. γ 7→ P

∀γ,P,Q. (γ 7→ P ∗ γ 7→ Q)⇒ .(P⇔ Q)

Gives a fresh name γ to P.

Agreement about proposition
named γ only holds at the next
step-index.

Derive named propositions from
lower-level principles:

Build named propositions on
ghost state.

23



Barrier
{True}

let b = newbarrier() in

{send(b,P ∗ Q) ∗ recv(b,P ∗ Q)}

[computation];

// Have: P ∗ Q

{
P ∗ Q ∗
send(b,P ∗ Q)

}
{recv(b,P)} signal(b) {recv(b,Q)}
wait(b); {True} wait(b);

// Have: P // Have: Q

{P} {Q}
[use result [use result
of computation] of computation]

Receive capability is
split.

P Q

{True}

let b = newbarrier()

{send(b,P) ∗ recv(b,P)}

{send(b,P) ∗ P} signal(b) {True}

{recv(b,P)} wait(b) {P}

recv(b,P ∗ Q) V recv(b,P) ∗ recv(b,Q)

24



Iris: Resting on Simple Foundations

Invariants:

{.I ∗ P} e {.I ∗ Q}E atomic(e)
I ι ` {P} e {v. Q}E]{ι}

Ghost state (any CMRA):

∀af ,n. a #n af ⇒ b #n af

a V b
a · b = c
a ∗ b ⇔ c

a ⇒ V(a)

For specifying some synchronization primitives,
these foundations are not enough!

Any PCM can be lifted to a CMRA, so all
the old reasoning remains valid.

25



Iris: Resting on Simple Foundations

Invariants:

{.I ∗ P} e {.I ∗ Q}E atomic(e)
I ι ` {P} e {v. Q}E]{ι}

Ghost state (any CMRA):

∀af ,n. a #n af ⇒ b #n af

a V b
a · b = c
a ∗ b ⇔ c

a ⇒ V(a)

For specifying some synchronization primitives,
these foundations are not enough!

Any PCM can be lifted to a CMRA, so all
the old reasoning remains valid.

25



What else?

• Other examples of higher-order ghost state

• How to simplify the model with CMRAs
• Coq formalization

Ongoing work:

• Encode invariants using higher-order ghost
state
• Applying named propositions in the safety
proof of Rust

Thank you for your attention!

26



What else?

• Other examples of higher-order ghost state
• How to simplify the model with CMRAs

• Coq formalization

Ongoing work:

• Encode invariants using higher-order ghost
state
• Applying named propositions in the safety
proof of Rust

Thank you for your attention!

26



What else?

• Other examples of higher-order ghost state
• How to simplify the model with CMRAs
• Coq formalization

Ongoing work:

• Encode invariants using higher-order ghost
state
• Applying named propositions in the safety
proof of Rust

Thank you for your attention!

26



What else?

• Other examples of higher-order ghost state
• How to simplify the model with CMRAs
• Coq formalization

Ongoing work:

• Encode invariants using higher-order ghost
state
• Applying named propositions in the safety
proof of Rust

Thank you for your attention!

26



What else?

• Other examples of higher-order ghost state
• How to simplify the model with CMRAs
• Coq formalization

Ongoing work:

• Encode invariants using higher-order ghost
state
• Applying named propositions in the safety
proof of Rust

Thank you for your attention!
26


