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LLVM miscompiles certain programs in C, C++, and Rust that use low-level language features such as raw

pointers in Rust or conversion between integers and pointers in C or C++. The problem is that it is difficult for

the compiler to implement aggressive, high-level memory optimizations while also respecting the guarantees

made by the programming languages to low-level programs. A deeper problem is that the memory model for

LLVM’s intermediate representation (IR) is informal and the semantics of corner cases are not always clear to

all compiler developers.

We developed a novel memory model for LLVM IR and formalized it. The new model requires a handful

of problematic IR-level optimizations to be removed, but it also supports the addition of new optimizations

that were not previously legal. We have implemented the new model and shown that it fixes known memory-

model-related miscompilations without impacting the quality of generated code.
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1 INTRODUCTION
Thememory model for a programming language determines how programs are permitted to observe

and modify storage. For example, references in Java are pointer-like in that they uniquely identify

objects in memory, but programs are not allowed to construct references into the middle of objects

or to fabricate references from scratch. In contrast, a truly low-level programming language, such

as assembly language, allows arbitrary memory locations to be inspected and modified with no

restrictions whatsoever on how addresses are computed.

C and C++ occupy an interesting niche. They are intended to be low-level languages; systems

software—operating system kernels, virtual machine managers, embedded firmware, programming

language runtimes, etc.—tends to be built in one or the other. To support these applications, pointers
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Fig. 1. In a flat memory model, storing a 1 into p[6] can overwrite the 0 in q[2]

into objects can be constructed using pointer arithmetic, and pointers may be converted to integers

and integers to pointers. However, despite their low-level character, the C and C++ memory models

also incorporate higher-level features. For example, the compiler is permitted to assume (with some

restrictions) that a pointer to one allocated object is not used as the basis for creating a pointer to

another object. The C and C++ standards committees intend for the languages to provide low-level

memory access when necessary, but otherwise retain the ability to heavily optimize code as if

it were high-level. This design point is not an easy one. The tension between the low-level and

high-level language features is significant and causes problems for both compiler and application

developers.

This paper is about sequential memory models for compiler intermediate representations (IRs).

The IR level is important because it is where high-level optimizations happen. Both GCC and LLVM

have memory models that are informally specified and that contain problems that lead to end-to-end

miscompilation of low-level programs. Appendix A shows a C program that is miscompiled by

both GCC and LLVM. However, the problems that we are attacking are broader than C and C++:

Appendix B shows a low-level (but safe) Rust function that is miscompiled by LLVM. The culprit

is a new bug we found in LLVM’s global value numbering (GVN) optimization. GVN propagates

equalities of pointers (as well as of integers) from branch conditions, replacing pointers with

value-equal ones. This, however, can change the behavior of a program, since pointers that compare

equal are not necessarily equivalent. The miscompilation of the C example can be traced back to a

second bug we found where LLVM incorrectly assumes that (int*)(intptr_t)p is equal to p.
Fixing these miscompilations within the current IR semantics would be possible, but would ne-

cessitate disabling useful optimizations. Our main contribution, which builds on insights developed

by [Kang et al. 2015], is a new, formalized IR memory model for LLVM that departs from the current

design in two ways. First, it uses deferred bounds checking to relax restrictions on the creation of

out-of-bounds pointers in such a way that useful code motion optimizations can be performed

soundly. Second, it uses twin allocation, which formalizes the idea that the value of a pointer has

to be observed directly, it cannot be guessed. Twin allocation supports aggressive optimization of

LLVM-based languages in the presence of low-level code such as integer-to-pointer casts. We have

adapted LLVM to the new semantics in order to show that it does not require major changes to the

compiler and it also does not degrade the performance of generated code.

2 BACKGROUND: MEMORY MODELS FOR INTERMEDIATE REPRESENTATIONS
In this section we describe the design space for low-level sequential memory models and explain

that existing designs are inadequate for managing the tension between low-level memory access

and high-level optimizations. Then, in Section 3, we describe the basis for the new memory model

for LLVM IR that we will formalize in Section 4. Our examples are written in a C-like syntax to

make them easier to read, even though the scope of the paper is to specify a memory model for

compiler IRs rather than for C.

2.1 Flat Memory Models
The two main questions a memory model needs to answer are (1) what is the return value of a

load instruction, and (2) under what conditions is a memory-accessing instruction well-defined. A
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consequence is that the memory model should define which memory locations a store instruction

writes to.

For example, what does the code below print? Or, alternatively, can the assignment p[6] = 0
change any byte of the object pointed to by q?

char *p = malloc(4);
char *q = malloc(4);
q[2] = 0;
p[6] = 1;
print(q[2]); // prints 0 or 1?

In a flat memory model, the programwould print 1 if q == p + 4, and 0 otherwise. A flat memory

model treats pointers like integers: a memory-accessing instruction can access any (unprotected)

location in memory, and therefore the program is allowed to guess the location of objects (as

shown in Figure 1). Some assembly languages have a flat memory model; others, such as those for

machines with segmented memory, do not.

While a flat memorymodel is conceptually simple and is a goodmatch for low-level programming,

it hinders high-level optimizations that are routinely performed by and considered essential in

modern compilers.

2.2 Data-Flow Provenance Tracking
In the previous example, we showed that the program can print either 0 or 1 depending on where

the memory allocator places the allocated blocks. This dependence on the run-time behavior of the

allocator overconstrains the compiler, blocking it from performing important optimizations such

as store forwarding. For example, we want the compiler to be able to propagate the store q[2] = 0
to the print instruction. Hence, the memory model needs a way to prevent the store to p[6] from

accessing q[2] regardless of where p and q end up pointing at run time. For example, rules to this

effect have been a part of C since C89.

Data-flow provenance tracking provides a way to prevent objects from being accessed via pointers

derived from unrelated objects. The idea is that each pointer is a pair of two values: the object to

which it can point to, and the memory address (or an offset within that object). It is undefined

behavior (UB) to try to access memory with a pointer that is out-of-bounds of its object. This

semantics is sufficient to allow the compiler to conclude that p[6] cannot access q[2], regardless
of the fact that at runtime they may end up referring to the same location.

Data-flow provenance tracking could be defined like this:

char *p = malloc(4); // (val=0x10, obj=p)
char *q = malloc(4); // (val=0x14, obj=q)
char *q2 = q + 2; // (val=0x16, obj=q)
char *p6 = p + 6; // (val=0x16, obj=p)

*q2 = 0; // OK
*p6 = 1; // UB, since out-of-bounds of obj p
print(*q2); // can be replaced with print(0);

The first store through q2 succeeds, since it is within the bounds of object q. The second store,

however, triggers UB because the pointer is out-of-bounds of its base object (p), even though the

program correctly guessed the address of a valid object (as shown in Figure 2). Finally, the compiler

can safely propagate the store *q2 = 0 to the print instruction since there are no well-defined

store instructions in between.
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p[0]

0
p[2] q[0] q[2]

p+6 ← out-of-bounds

Fig. 2. In a memory model with data-flow provenance tracking, p[6] is not allowed to alias q[2]

2.3 Extending Provenance to Integers
The model we showed in the previous section does not support low-level language features like

integer to pointer casts. To support this functionality, we can extend integers with provenance

information:
1

char *p = malloc(4); // (val=0x10, obj=p)
char *q = (int*)0x10; // (val=0x10, obj=nil)

*q = 0; // UB, since obj=nil
if (p == q)

*q = 1; // still UB; obj=nil

int v = (int)p; // (val=0x10, obj=p)
int w = v + 2; // (val=0x12, obj=p)

*(char*)w = 3; // OK

char *r = malloc(4); // (val=0x14, obj=r)
int x = v + (int)r; // (val=0x24, obj=??)
int y = x - (int)r; // (val=0x10, obj=??)

In this model, each integer and pointer variable tracks a numeric value plus the object it refers

to, or nil if none. As in the previous model, addresses of objects, even if stored as integer variables,

need to be derived from an object. Hence, the stores through q are UB. The accesses through w are

well-defined since the value of this integer variable derives (data-flow wise) from a valid object.

The last lines of the example show that provenance tracking breaks down when doing integer

arithmetic operations. It is hard to assign meaningful semantics to cases like these.

A drawback of this model—fatal in practice—is that it blocks many integer optimizations, such

as propagation of equalities as done by, e.g., global value numbering (GVN) or range analysis. For

example, transforming “(a == b) ? a : b” into “b” is incorrect in this model: even if two integer

variables compare equal, they may still have different provenances. We give a more complete

example to demonstrate the problem:

char *p = malloc(4); // (val=0x10, obj=p)
char *q = malloc(4); // (val=0x14, obj=q)
int v = (int)p + 4; // (val=0x14, obj=p)
int w = (int)q; // (val=0x14, obj=q)

if (v == w)
*(int*)w = 2;

In this program, v and w happen to have the same value, but they differ in their provenance.

Hence it is not safe to replace “*(int*)w = 2” with “*(int*)v = 2”. Doing so would introduce

UB since “v” is only allowed to access object p and its offset is out-of-bounds. However, this sort

1
We will use int to represent an integer type that is sufficiently large to hold a pointer for brevity.
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of equality propagation is routinely done by GVN. In fact, a transformation similar to this one

performed by GVN was responsible for miscompiling the Rust code shown in Appendix B.

2.4 Wildcard Provenance
The previous memory model has the advantage of supporting low-level operations and enabling

high-level memory optimizations. However, since integer variables now carry provenance, it makes

some integer optimizations unsound. One way to solve this problem is to remove provenance from

integer variables, as follows:

char *p = malloc(4); // (val=0x10, obj=p)
char *q = malloc(4); // (val=0x14, obj=q)
int v = (int)p + 4; // (val=0x14)
int w = (int)q; // (val=0x14)

if (v == w) {
char *r = (int*)w; // (val=0x14, obj=*)
*r = 2;

}

The differences to the example in the previous section are that (1) integers only carry a numeric

value, and (2) a pointer obtained by casting from an integer can access any object (represented

with a *). Therefore, v and w can be used interchangeably, and GVN for integers becomes sound

again. This model has a major disadvantage: precise alias analysis becomes very difficult as soon as

a single integer-to-pointer cast has been performed by the program being compiled. In the next

sections we explore how to recover precision.

2.5 Inbounds Pointers
In the previous section, we presented a model with wildcard provenance; this works, but it impedes

precise alias analysis. In this section we explain the model currently used by LLVM where pointer

arithmetic is optionally “inbounds,” allowing some precision to be recovered by making out-of-

bounds pointer arithmetic undefined:

char *p = malloc(4); // (val=0x10, obj=p)
char *q = foo(p); // (val=0x13, obj=p)
char *r = q +inb 2; // poison: 0x15 is out of bounds of p

p[1] = 0;
*r = 1; // UB
print(p[1]); // prints 0 or 1?

When doing inbounds pointer arithmetic (+inb), the base pointer and the result must be within

bounds of the same object (or one past its end). This is not the case in r, hence the result of the
operation is poison, which then makes the dereference of this pointer UB [LangRef 2018].

Even if the compiler does not know the value of q, because of the inbounds pointer arithmetic it

now knows that the minimum offset of r has to be two, since both q and r have to be in bounds

of the same object (i.e., 0 ≤ oq ≤ n and 0 ≤ or ≤ n, with oq and oq being the offsets of q and r
respectively within the object, and n the object size). Since the access to p[1] only accesses offset

one of an object, and *r can only access offset two or beyond, the compiler can conclude these

accesses do not alias (and that the program prints 0 always).
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3 A MEMORY MODEL FOR LLVM
This section informally describes a modified IR-level memory model that: enables high-level

optimizations while still supporting low-level code; does not restrict movement of pointer arithmetic

instructions (which remain pure functions); and, does not inhibit any standard integer optimizations.

Section 4 formalizes the new model.

3.1 Deferred Bounds Checking
A drawback of LLVM’s current inbounds pointer checking is that it prevents reordering of pointer

arithmetic instructions and allocation functions:

char *p = malloc(4); // (val=0x10, obj=p)
char *q = malloc(4); // (val=0x14, obj=q)

char *r = (char*)((int)p + 5); // (val=0x15, obj=*)
char *s = r +inb 1; // (val=0x16, obj=q)
*s = 0; // OK

In this example, s is a valid pointer (i.e., it is in bounds of an object). However, if we move the

definitions of r and s across that of q, s becomes out-of-bounds, and thus gets assigned poison.2

Constraining the movement of instructions is not desirable, since it inhibits optimizations like

code hoisting. LLVM, as it turns out, freely moves pointer arithmetic instructions around. This is

unsound. Our new model fixes the problem by instead using deferred bounds checking, in contrast

with LLVM’s current immediate bounds checking.
In deferred bounds checking, we allow out-of-bounds pointers to be created and manipulated;

undefined behavior is only triggered when such a pointer is dereferenced. It is now OK to reorder

pointer arithmetic across allocation functions in the previous example:

char *p = malloc(4); // (val=0x10, obj=p)

char *r = (char*)((int)p + 5); // (val=0x15, obj=*)
char *s = r +inb 1; // (val=0x16, obj=*, inb={0x15,0x16})

char *q = malloc(4); // (val=0x14, obj=q)

*s = 0; // OK since 0x15 and 0x16 are inbounds of same object

For pointers with obj=*, we now track a set of addresses that have to be within bounds of the

same object when the pointer is dereferenced. On every inbounds pointer arithmetic operation, we

record in the inb field the base pointer as well as the resulting pointer. A memory access operation

is UB if not all the addresses in inb are within bounds of the same object. Therefore, the inbounds

check is delayed until the pointer is dereferenced. While deferred bounds checking achieves the

same effect as immediate bounds checks, it allows free movement of pointer arithmetic instructions

since they now do not depend on the memory state.

Precision could be further increased by replacing * provenance with the object(s) the cast pointer

refers to. In the first example above we could define r to have value (val=0x15, obj=q) instead.
However, this is also a form of immediate bounds checking with the same movement restriction.

Moreover, some addresses are in bounds of two objects, like 0x14 in the example (corresponds to p
+ 4 and q), adding further complexity to the model. Therefore, we do not use these semantics.

2
Note that while this example is not correct in memory models with data-flow provenance tracking, it is ok in our model.

Even though we build a pointer into q based on p, this might be the result of the compiler propagating an equality that

established that p == q + 4.
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3.2 Preventing Address Guessing
This section introduces twin allocation, a technique that allows our model to prevent a program

from guessing addresses of objects without data-flow provenance tracking.

A problem with wildcard provenance is that a pointer formed out of an integer can access any

object. Consequently, a program may be able to guess the address of any object and access it. This

makes precise alias analysis very difficult.

A simple idea to prevent guessing is to exploit the fact that allocation functions return a non-

deterministic value:

char *p = malloc(4); // (val=*, obj=p)
char *q = 0x10;
*q = 0; // UB if val(p) != 0x10

This program can guess the address of p in a possible execution where malloc returns 0x10.
However, there is at least one execution where the program fails to guess the address of p (e.g.,

malloc returns 0x20), and so the program would trigger UB. Since there is at least one execution

where the program would trigger UB, the compiler can assume q cannot alias with p (or with any

object at all).

Even with non-deterministic allocations, a program can still (desirably) observe the address of

an object such that a pointer created by casting from an integer can alias with that object, e.g.:

char *p = malloc(4); // (val=*, obj=p)
*p = 0;
int v = 0x10;
if ((int)p == v)

*(int*)v = 1;
print(*p); // can print 0 or 1

This program is well-defined and may print 0 or 1, depending on the return value of malloc.
The comparison is sufficient for the program to observe the address of object p, and so *(int*)v
= 1 will not trigger UB in any execution.

However, this semantics still has a caveat: it allows programs to guess addresses through a

“side-channel leak.” The leak happens when the memory only has a single address left where a new

object can be allocated. For example, assume that a system has an 8-bit heap segment as well as

8-bit pointers, that heap address 0x00 is legal, and that the allocations below succeed:

char *p = malloc(0x80);
char *q = malloc(0x80);

*q = 0;
int v = ((int)p == 0x00) ? 0x80 : 0x00;
*(char*)v = 1;

print(*q); // prints 1

Since each heap cell is half the size of the address space, there are only two possible heap

configurations: p-first or q-first. Therefore, a single test allows the program to guess the address

of q without having to explicitly observe it. In other words, when memory is finite, returning

a non-deterministic value from allocation functions is not sufficient to prevent programs from

guessing addresses.
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Fig. 3. Memory configuration: (a) almost full with only two bytes left, (b) after allocating p and q in (a), (c)
after allocating p with twin allocation semantics in (a), (d) alternative configuration where twin allocation
had enough space for both objects.

Our solution is to change allocation functions to reserve (at least) two blocks instead of a single

one, as it happens in run-time implementations. We call this technique twin allocation, and we use

it to formalize the notion that a program cannot guess the address of an object.

We will informally explain the concept of twin allocation with the following example:

char *p = malloc(1);
char *q = malloc(1);

*q = 0;
int v = (int)p + 1; // equal to q?
*(char*)v = 1;

print(*q); // prints 0 or 1?

Since the address of q was not observed, we would like the compiler to be able to conclude that

the program can only print 0. However, as we have seen previously, if the memory is full, observing

the address of one object may implicitly disclose the address of another object. In Figure 3(a) we

show a possible memory configuration before our allocations, and (b) shows the configuration after

allocating p and q.
With twin allocation, each allocation function reserves at least two blocks. Non-deterministically,

one of the blocks is used and its address is returned, and the remaining blocks are marked as

unreachable (i.e., it is UB to access those memory regions). By reserving two blocks, we guarantee

there is enough non-determinism left such that the program cannot guess the address of a block

even if the memory is full.

In Figure 3(c), we show that with twin allocation our previous example would simply run out of

memory, and thus the program cannot continue and try to guess the address of q. In (d) we show

another memory configuration where the space left was just enough to allocate two blocks for each

allocation. Since we have two blocks per object, malloc can still return one of the two addresses

non-deterministically, effectively inhibiting the program from guessing the address of an object.

Even if a program is able to guess the address of, say, p1 (and even p2 as well), it is not able to guess
which of the remaining addresses points to q: It cannot know which of q1 and q2 was used.

3.3 Summary
We have informally presented our memory model for LLVM IR. To support both high-level opti-

mizations and low-level code, we split pointers into two categories. First, logical pointers, derived

from allocation sites, for which we do data-flow dependence tracking. That is, a pointer q obtained

by pointer arithmetic operations from p (e.g., q = p + x) can only access the same object as p.
Second, physical pointers, derived from integer-to-pointer casts, for which we do not do data-flow
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Num(sz) : := { i | 0 ≤ i < 2
sz }

Time : := N
BlockID : := N
CallID : := N
Mem : := Time × (BlockID↛ Block) × (CallID↛ Time ⊎ {None})
AddrSpace : := N
Block : := { (t, r ,n,a, c, P) | t ∈ { stack, heap, global, function } ∧ r ∈ (Time × (Time ⊎ {∞})) ∧

n ∈ N ∧ a ∈ N ∧ c ∈ Byte
n ∧ P ∈ (AddrSpace↛ Num(64)N+1) }

LogAddr(s) : := { Log(l,o, s) | l ∈ BlockID ∧ o ∈ Num(ptrsz(s)) }
PhyAddr(s) : := { Phy(o, s, I , cid) | o ∈ Num(ptrsz(s)) ∧ I ⊂ Num(ptrsz(s)) ∧ cid ∈ CallID ⊎ {None} }
Addr(s) : := LogAddr(s) ⊎ PhyAddr(s)
⟦isz⟧ : := Num(sz) ⊎ { poison }

⟦⟨sz×ty⟩⟧ : := {0, . . . , sz − 1} → ⟦ty⟧
⟦ty∗⟧ : := Addr(0) ⊎ { poison }

Name : := { %x, %y, . . . }
Reg : := Name → { (ty,v) | v ∈ ⟦ty⟧ }
Byte : := Bit

8

Bit : := ⟦i1⟧ ⊎ AddrBit

AddrBit : := { (p, i) | ∃s . p ∈ Addr(s) ∧ (0 ≤ i < ptrsz(s)) }

Fig. 4. Definitions. ptrsz(s) is the pointer size (in bits) for a given address space s (e.g., 64). The set of all
possible values of a type ty is given by ⟦ty⟧.
dependence tracking, since that would block standard integer optimizations such as equality propa-

gation. We employ two new techniques to recover precision instead: delayed bounds checking (to

restrict the set of objects a pointer can point to, while keeping pointer arithmetic operations pure),

and twin memory allocation (to prevent address guessing).

4 SEMANTICS AND TRANSFORMATIONS
In this section, we present a formal view of themodifiedmemorymodel for LLVM that we informally

presented in Section 3. Our top-level design goal was to support low-level operations required by

C and C++, such as casting between integers and pointers, while also enabling high-level memory

optimizations. Additional goals were: not interfering with integer optimizations, not constraining

opportunities for code motion, not requiring major changes to make LLVM conform to the new

model, and finally, avoiding significant regressions in compile time and in quality of generated code.

4.1 Logical and Physical Pointers
As we saw in Section 2.4, we have two types of pointers. Logical pointers are obtained by calling

an allocation function or by doing pointer arithmetic on a logical pointer. In Section 2.4 these are

the pointers with provenance of one object, e.g., (val=0x10, obj=p). The second type of pointer

is the physical pointer, which is the result of an integer-to-pointer cast. In Section 2.4, these are the

pointers with wildcard provenance, e.g., (val=0x10, obj=*); they can access any object.

In Fig. 4 we show the definitions for our model. Logical and physical pointers are represented,

respectively, by Log(l,o, s) and Phy(o, s, I , cid).

Logical Pointers. A logical pointer Log(l,o, s) consists of a logical block id l , an offset o within the

block, and the address space s it corresponds to (explained later in Section 4.2). A logical pointer

corresponds to the address P + o on the physical machine, where P is the base address of block l .
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Logical pointers realize the rule that pointers derived from one object can never be used to

modify other objects. This is achieved by making it impossible to change the value of l : Pointer
arithmetic only affects the offset o.

Physical Pointers. As we have seen in Section 2.4, tracking objects in a pointer obtained by an

integer-to-pointer cast is not viable because (1) some addresses may be within bounds of multiple

objects, and (2) it prevents reordering of instructions. Hence we introduce physical pointers, roughly

corresponding to pointers in a flat memory model.

A physical pointer Phy(o, s, I , cid) consists of an offset o within the address space s (i.e., the
physical address), as well as two additional fields I and cid to restrict the set of objects the pointer can
access. This allows us to recover alias analysis precision, and it enables several of the optimizations

allowed by the C and C++ standards. Field I is a set of physical addresses that corresponds to

the inb field we used to specify deferred bounds checking in Section 3.1. When the pointer is

dereferenced, each address in I must be inbounds of the same object as o. Field cid is a call id, which

corresponds to the time stamp when the pointer was passed as argument to a function, or None if
the pointer did not originate from an argument. The intent is to show that pointers received as

arguments do not alias locally allocated objects, e.g.:

int f(int *p) {
int a = 0;
if (&a == p)

*p = 1;
return a; // returns 0 or 1?

}

Since a physical pointer can access any object, if there was no call id restriction, this function

could return either 0 or 1. However, since p has a call id of a function call still on the call stack, it

cannot access any object created after the call.

The motivation to have an indirection in the time stamp of the call time in the pointer (cid indexes

in memoryM to retrieve the time stamp) is to support escaping pointers. Escaped physical pointers

should behave as their cids being None after termination of the function call. This supports moving

function calls across other function calls. If a function stores a pointer received by argument in a

global variable, we did not want to have to record that fact and change all such pointers when the

function returns. This way we only need to change the mapping between cid and time stamp on

function return (set it to None).

4.2 Address Spaces
LLVM uses address spaces to represent distinct memories, and our memory model also supports this

feature. For example, a machine might use one address space for the CPU and another for the GPU,

or one address space for code and another for data. Since both memories may have overlapping

address ranges (e.g., they may both use addresses in the range [0, 264)), the address space field in

pointers is used to disambiguate between the two.

The main memory of the CPU is assigned the address space zero. It is possible that a physical

memory region is mapped into multiple address spaces. In this case the application can use an

address cast instruction to convert pointers between address spaces.

A consequence of possible overlapping of address spaces is that pointers belonging to different

address spaces may alias. To improve precision of alias analysis, we parameterize our model by the

overlap.
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(ι = “r = call i8∗ malloc(i64 len)”)
malloc

n = ⟦len⟧R c = i(8 × n)⇓(poison)
P unallocated physical addresses, l fresh
m′ =m[l 7→ (heap, (τcur ,∞),n,a, c, P)]

R, (τcur ,m,C)
ι
↪−→ R[r 7→ Log(l, 0, 0)], (τcur + 1,m′,C)

(ι = “call void free(i8∗ ptr )”)
free-logical

Log(l, 0, 0) = ⟦ptr⟧R
m(l) = (heap, (b,∞),n,a, c, P)

m′ =m[l 7→ (heap, (b, τcur ),n,a, c, P)]

R, (τcur ,m,C)
ι
↪−→ R, (τcur + 1,m

′,C)

(ι = “r = ptrtoint ty∗ op to isz”)
ptrtoint-logical

Log(l,o, s) = ⟦op⟧R
cast2intM (l,o, s) = j

R,M
ι
↪−→ R[r 7→ j%2sz],M

(ι = “r = inttoptr i64 op to ty∗”)
inttoptr

i = ⟦op⟧R
p = Phy(i, 0, ∅,None)

R,M
ι
↪−→ R[r 7→ p],M

(ι = “r = icmp eq ty∗ op1 op2”)
icmp-ptr-logical

Log(l,o1, s) = ⟦op1⟧R
Log(l,o2, s) = ⟦op2⟧R

R,M
ι
↪−→ R[r 7→ (o1 = o2)],M

(ι = “r = icmp eq ty∗ op1 op2”)
icmp-ptr-logical’

Log(l1,o1, s) = ⟦op1⟧R
Log(l2,o2, s) = ⟦op2⟧R

l1 , l2

R,M
ι
↪−→ R[r 7→ false],M

(ι = “r = icmp eq ty∗ op1 op2”)
icmp-ptr-physical

Phy(o1, s, I1, cid1) = ⟦op1⟧R
Phy(o2, s, I2, cid2) = ⟦op2⟧R
R,M

ι
↪−→ R[r 7→ (o1 = o2)],M

(ι = “r = icmp ule ty∗ op1 op2”)
icmp-ule-ptr-physical

Phy(o1, s, I1, cid1) = ⟦op1⟧R
Phy(o2, s, I2, cid2) = ⟦op2⟧R

R,M
ι
↪−→ R[r 7→ (o1 ≤u o2)],M

(ι = “r = icmp eq ty∗ op1 op2”)
icmp-ptr-logical-nondet-true

Log(l1,o1, s) = ⟦op1⟧R
Log(l2,o2, s) = ⟦op2⟧R

m(l1) = (t1, r1,n1,a1, c1, P1)
m(l2) = (t2, r2,n2,a2, c2, P2)

l1 , l2(
(o1 = n1 ∧ o2 = 0) ∨ o1 > n1 ∨
(o1 = 0 ∧ o2 = n2) ∨ o2 > n2 ∨

r1, r2 disjoint
)

R, (τcur ,m,C)
ι
↪−→ R[r 7→ true], (τcur ,m,C)

(ι = “r = icmp ule ty∗ op1 op2”)
icmp-ptr-ule-logical

Log(l,o1, s) = ⟦op1⟧R
Log(l,o2, s) = ⟦op2⟧R

R,M
ι
↪−→ R[r 7→ (o1 ≤u o2)],M

(ι = “r = gep ty∗ op1 isz op2”)
gep-logical

Log(l,o, s) = ⟦op1⟧R i = ⟦op2⟧R
o′ = (o + bytewidth(ty) ∗ i)% 2

ptrsz(s)

R,M
ι
↪−→ R[r 7→ Log(l,o′, s)],M

(ι = “r = gep ty∗ op1 isz op2”)
gep-physical

Phy(o, s, I , cid) = ⟦op1⟧R i = ⟦op2⟧R
o′ = (o + bytewidth(ty) ∗ i)% 2

ptrsz(s)

R,M
ι
↪−→ R[r 7→ Phy(o′, s, I , cid)],M

(ι = “r = gep inbounds ty∗ op1 isz op2”)
gep-inbounds-logical

Log(l,o, s) = ⟦op1⟧R
o′ = o + bytewidth(ty) ∗ i

i = ⟦op2⟧R
inboundsM (l,o)
inboundsM (l,o′)

R,M
ι
↪−→ R[r 7→ Log(l,o′, s)],M

(ι = “r = gep inbounds ty∗ op1 isz op2”)
gep-inbounds-physical

Phy(o, s, I , cid) = ⟦op1⟧R i = ⟦op2⟧R
o′ = o + bytewidth(ty) ∗ i

0 ≤ o′ < 2
ptrsz(s)

R,M
ι
↪−→ R[r 7→ Phy(o′, s, I ∪ { o,o′ }, cid)],M

(ι = “r = psub ty∗ op1, op2”)
psub-logical

Log(l,o1, s) = ⟦op1⟧R
Log(l,o2, s) = ⟦op2⟧R
i = (o1 − o2)% 2

ptrsz(s)

R,M
ι
↪−→ R[r 7→ i],M

(ι = “r = psub ty∗ op1, op2”)
psub-logical-poison

Log(l1,o1, s) = ⟦op1⟧R
Log(l2,o2, s) = ⟦op2⟧R

l1 , l2

R,M
ι
↪−→ R[r 7→ poison],M

(ι = “r = psub ty∗ op1, op2”)
psub-physical

Phy(o1, s, I1, cid1) = ⟦op1⟧R
Phy(o2, s, I2, cid2) = ⟦op2⟧R

i = (o1 − o2)% 2
ptrsz(s)

R,M
ι
↪−→ R[r 7→ i],M

Fig. 5. Selected rules of our operational semantics
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4.3 Memory Blocks
We define memory M = Time × (BlockID↛ Block) × (CallID↛ Time ⊎ {None}) as a triple of a
time stamp, a map from logical block ids to memory blocks, and a map recording the time stamp of

each function call (indexed on cid of physical pointers). When a new memory block is created (e.g.,

with malloc or alloca) or deallocated, the time stamp is incremented by one.

A memory block is a tuple (t, r ,n,a, c, P), where t is the block type (e.g., stack or heap allocated),

r is the life range of the block, n is the block size in bytes, a is the alignment, c the contents of the
block (the actual data), and P has the addresses of the block.

When a block is deallocated (e.g., with free or on function exit), it is not deleted from memory.
3

Instead, we set the end of the lifetime range to the current memory time stamp, and increment it as

well. free-logical in Fig. 5 shows the semantics of free. If a physical pointer Phy(o, s, I , cid) is given
to free, it is equivalent to freeing a dereferenceable block whose base address is o. Double-freeing a
block or free with a logical pointer with non-zero offset is UB. free with NULL is no-op.

Memory allocation functions reserve at least two blocks: The block actually observed by the

program, and N additional twin blocks. The number N of twin blocks is a parameter of the semantics.

(We will discuss in Section 4.12 why N = 1 might not be enough.) The block’s base addresses in

address space s are stored in P(s), a sequence of physical addresses: P(s)0 is the actual base address
used and observed by the program, while the remaining addresses in the sequence are the base

addresses of the twin blocks.

Crucially, we maintain the invariant that for P, P ′
of any pair of different live (non-deallocated)

blocks, the address ranges [P(s)i , P(s)i +n) and [P
′(s)j , P

′(s)j +n) are disjoint. Thus,malloc reserves
space for both the block and its twins (Fig. 5). The rest of the semantics only depends on P(s)0 and
ignores the remaining base addresses.

In Fig. 5, notation ⟦op⟧R represents the evaluation of an instruction’s operand:

⟦v⟧R =
{
R(v) if v is a register

v if v is a constant or v = poison

4.4 Pointer Arithmetic
LLVM IR has a single instruction for pointer arithmetic, getelementptr, or gep for short. In Fig. 5

we show the semantics of several cases. For a logical pointer, the result is also a logical pointer

where only the offset is updated (gep-logical). Likewise for physical pointers (gep-physical).

Function inboundsM (l,o) checks if a given offset o is within bounds of object l in memory

M = (τ ,m,C). Ifm(l) = (t, r ,n,a, c, P), inboundsM (l,o) is true iff 0 ≤ o ≤ n.
When gep has the inbounds tag (e.g., when compiling C/C++ code or most cases in safe lan-

guages), the compiler can assume that the input pointer is valid (within bounds of some object or

else one element past the end) and also that the resulting pointer is valid. For logical pointers, the

bounds checking is immediate (gep-inbounds-logical). If either of the inbounds conditions fails,

the result is poison (not shown).

If the pointer is physical, we use deferred bounds checking: input and output offsets are added to

I . They are checked to be inbounds only when the pointer is dereferenced. As seen in Section 3.1,

this allows free movement of gep instructions since they do not depend on the memory state.

3
Note that memory is deallocated at run time as expected. Also, in our semantics addresses can be reused because allocation

functions allocate blocks with addresses that are disjoint from all other live blocks only.
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4.5 Casting
LLVM has two pointer/integer casting instructions: ptrtoint and inttoptr. The semantics of casting

a logical pointer to an integer is given in ptrtoint-logical. Function cast2intM (l,o, s) converts
Log(l,o, s) to the integer P(s)0 + o based on block l . If the operation P(s)0 + o overflows, it wraps
around. This can happen if the pointer is out of bounds. Instruction ‘ptrtoint Phy(o, s, I , cid)’ yields
o. If the size of the destination type isz is larger than the pointer width, the result is zero-extended.

If it is smaller, the most significant bits are truncated.

Casting from an integer to a pointer returns a physical pointer with no provenance information

(inttoptr). No check is done on whether the pointer refers to a valid location or not. This avoids a

dependency on the memory state, and thus allows code motion.

The NULL pointer used in, e.g., C is defined as ‘inttoptr 0’ because C programs use ‘(void*)0’
as the null pointer value.

Casting a pointer to a different address space through addrspacecast translates the pointer’s
offset(s) using a target-specific mapping function. If the pointer is logical, it preserves the block id

and offset if in bounds, otherwise it yields poison. If the pointer is physical, ‘ptrtointPhy(o, s, I , cid)’
updates o as well as the offsets in I .
In our semantics, all casting instructions can be freely moved, removed, or introduced.

4.6 Pointer Comparison
To support pointer optimizations, pointer comparison must be defined as something more elaborate

than simply comparing the underlying machine addresses. For example, the following program

compares two logical pointers that obviously point to different objects. We would like, therefore, to

fold this comparison to false:

char *p = malloc(4);
char *q = malloc(4);

char *pp = some expr over p;
char *qq = some expr over q;
if (pp == qq) { /* always false? */ }

If pp and qq are dereferenceable, i.e., their offsets are in the range [0, 4), the comparison should

yield false since the resulting machine addresses cannot be the same (since objects p and q cannot
overlap). However, what if pp == p + 4, qq == q, and the objects p and q were allocated consecu-

tively (i.e., p + 4 == q)? Even though pp and qq are conceptually very different pointers, their

underlying machine addresses are the same. Therefore, if the compiler lowers pointer comparison

into a comparison of the respective machine addresses in assembly, the comparison would yield

true.
In our semantics, we define the comparison p + n == q to yield a non-deterministic value,

justifying both the lowering to machine address comparison, and the desired optimization. This

way the compiler can always fold comparisons between different objects to false without having

to prove that they cannot have the same machine address.

This optimization corresponds to language in the C++ standard that allows an indeterminate

result when comparing non-dereferenceable pointers. In contrast, the C standard inconveniently

specifies that the physical values of the pointers must be compared. This implies that p + n == q
must evaluate to true if p and q were allocated consecutively.

Formally speaking, rule icmp-ptr-logical’ defines that comparing logical pointers to different

blocks can always evaluate to false. Furthermore, icmp-ptr-logical-nondet-true states that if

the offset of either pointer is not dereferenceable, the comparison can also evaluate to true.
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Making pointer comparison non-deterministic violates the C standard. However, both GCC

and LLVM (in C mode) will fold a comparison to false even when the pointers compare equal,

effectively choosing code quality over standards conformance. The C semantics makes programs

harder to optimize since it causes pointer comparisons to leak information about the memory

layout, therefore requiring compilers to conservatively assume that most compared pointers escape

(which inhibits many optimizations, such as store forwarding and dead store elimination).

A caveat of this choice of semantics is that even if a pointer comparison returns true, we
cannot assume that two pointers have the same value. However, this was already the case because

pointer comparison ignores, e.g., the extra precision fields in physical pointers like cid. This makes

propagation of pointer equalities (e.g., GVN) unsound. We show later in this section how to make

GVN for pointers correct.

For pointer inequality comparison (e.g., p <= q), for two logical pointers of the same block, if their

offsets are inbounds the result is simply the comparison of their offsets (icmp-ptr-ule-logical).

If the offsets are not inbounds, pointer values may overflow in hardware and hence produce a

different result than if comparing the offsets. Hence, if one of the offsets is not inbounds, the result

of the comparison is nondeterministic, allowing both the compiler to optimize comparisons based

on the pointer offsets, as well as efficient compilation of pointer comparisons to assembly.

Comparison of logical pointers into different blocks yields a non-deterministic value. We cannot

compare their integer values since that would leak information about the memory layout. We

do not make the comparison yield poison in this case because optimizations like vectorization

introduce comparisons between pointers of potentially different blocks to check at run time if

vectorized accesses overlap or not (to check if it is safe to run the vectorized code).

Comparing two physical pointers is equivalent to comparing their integer representations (icmp-

ptr-physical, icmp-ule-ptr-physical). If one pointer is logical and the other physical, the logical

pointer is converted to a physical pointer and then they are compared. This naturally supports

the definition of comparison with pointer-integer roundtrip in the C/C++ standard: Given a valid

pointer p, (void*)(int)p == p should be true. The pointer-integer round trip yields a physical

pointer in our semantics, hence the comparison is always true.

4.7 Pointer Subtraction
Pointers can be subtracted to compute the difference between their offsets. This can be soundly

implemented by first casting the pointers to integers and then performing an integer subtraction.

In fact, this is what LLVM/Clang does today.

However, there is potential for improvement: The C/C++ standard permits an indeterminate

result for the subtraction of pointers into different blocks. However, if the operation was realized

as an integer subtraction, such an operation would be well defined and therefore leak information

about the memory layout. Therefore, lowering pointer subtraction to subtraction of pointers casted

to integers fundamentally loses precision.

In our semantics, if the program subtracts logical pointers from different blocks, the result is a

poison value. To this end, we introduce a new instruction psub that takes two pointers and returns

their difference. When given two logical pointers, psub gives the difference of their offsets if they

refer to the same block (psub-logical). Otherwise, if the pointers refer to different logical blocks,

psub returns poison (psub-logical-poison). If at least one of the pointers is physical, both pointers

are cast to integers and their difference is computed.

Besides the theoretical precision improvement by having a dedicated pointer subtraction instruc-

tion, there is also a practical advantage. Compiler analyses are naturally imprecise. In particular,
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when they see a pointer-to-integer or an integer-to-pointer cast, they tend to bail out. By intro-

ducing a new instruction for pointer subtraction, we are able to reduce the number of these casts

significantly (as shown later in the evaluation).

4.8 Memory Block Lifetime
Besides the p + n == q case, the machine addresses of different logical pointers may also be equal

when addresses get reused by the allocator. For example:

char *p = malloc(4);
free(p);
char *q = malloc(4);
if (p == q) { /* ... */ }

We would again like to optimize the comparison to false because we are comparing the results

of two separate calls to malloc. And again, in an actual execution, the addresses may be equal

because malloc can reuse memory after free.
A common solution to this problem is to let the behavior of pointer equality depend on whether

the block that p points to is still allocated. However, the problem with that approach is that it makes

comparison not freely reorderable with deallocation. Another solution is to define comparisons with

freed blocks as UB (as C and C++ standards do), but that limits movement of pointer comparisons

as well. Instead, we add the concept of a lifetime to our memory blocks. The memory time stamp

gets incremented on every memory allocation and deallocation. The end of the lifetime of a block

is initially ∞ and gets set when the block is deallocated.

In the above situation, because the lifetimes of the two blocks do not overlap, we again make

pointer comparison non-deterministic, justifying the optimization. This is reflected in icmp-ptr-

logical-nondet-false, which also applies if the lifetimes of the blocks are disjoint.

This lifetime-based handling of pointer comparison has the caveat that a free can no longer be

moved up above a malloc of a different block, since that would make the two blocks’ lifetimes no

longer overlap, possibly affecting program behavior. Although this an interesting optimization to

support (to reduce peak memory consumption and potentially reuse cached memory), LLVM does

not perform it.

4.9 Load and Store
To perform a memory access of size sz > 0 through a pointer p on memoryM , the pointer must be

dereferenceable, written derefM (p, sz). If p is a logical pointer Log(l,o, s) where block l is not freed
and inboundsM (l,o) ∧ inboundsM (l,o + sz), then we have derefM (p, sz).

If p is a physical pointer Phy(o, s, I , cid), there must be a still-alive block (t, (b,∞),n,a, c, P) with
id l and an offset ol such that P(s)0 + ol = o and inboundsM (l,ol ) ∧ inboundsM (l,ol + sz). (Note
that l and ol are uniquely determined since memory blocks are disjoint and sz > 0.) Moreover, all

addresses o′ ∈ I must be inbounds of the same block, i.e., ∀o′ ∈ I , inboundsM (l,o′ − P(s)0). If the
pointer was derived from a parameter (i.e., cid , None) and the function corresponding to that

parameter did not return yet (i.e.,M(cid) , None), then b < M(cid), i.e., the block must have been

allocated before the function call identified by cid started. If all these requirements are satisfied, we

have derefM (p, sz).
To support conversion between values and low-level bitwise representation, we define two

meta operations, ty⇓ ∈ (⟦ty⟧ → Bit
bitwidth(ty)) and ty⇑ ∈ (Bitbitwidth(ty) → ⟦ty⟧). For base types,

ty⇓ transforms poison into the bitvector of all poison bits, and defined values into their standard

low-level representation (Fig. 6a). getbitv i is a partial function that returns the ith bit of a value v .
If v is a pointer, getbitv i returns either poison if v is poison or a pair (p, i) which is an element
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isz⇓(v) or ty∗⇓(v) = λi . getbitv i
⟨sz×ty⟩⇓(v) = ty⇓(v[0])++ . . .

++ ty⇓(v[sz − 1])

(a) Converting a value to a bit vector

isz⇑(b) =

n if ∀0≤i<sz b[i] , poison

such that ∀0≤i<sz b[i] = n.i
poison otherwise

(b) Converting a bit vector to an integer

(ι = “r = load ty, ty∗ op, align a”)
Load(M, ⟦op⟧R, bitwidth(ty),a) fails

R,M
ι
↪−→ UB

Load(M, ⟦op⟧R, bitwidth(ty)) = v
R,M

ι
↪−→ R[r 7→ ty⇑(v)],M

(ι = “store ty op1, ty∗ op, align a”)
Store(M, ⟦op⟧R, ty⇓(⟦op1⟧R ),a) fails

R,M
ι
↪−→ UB

Store(M, ⟦op⟧R, ty⇓(⟦op1⟧R )) = M ′

R,M
ι
↪−→ R,M ′

Fig. 6. Semantics of load and store

of AddrBit denoting the ith bit of a non-poison pointer p. For vector types, ty⇓ transforms values

element-wise, where ++ denotes the bitvector concatenation.

isz⇑(b) transforms a bitwise value b to an integer of type isz (Fig. 6b). Notation n.i is used to

represent the ith bit of a non-poison integer n. Type punning from pointer to integer yields poison.
This is needed to justify redundant load-store pair elimination.

4
If any bit of b is poison, the result

of isz⇑(b) is poison. For vector types, ty⇑ transforms bitwise representations element-wise.

ty∗⇑(b) transforms a bitvector b into a pointer of type ty∗. If b is exactly all the bits of a pointer

p in the right order, it returns p. Otherwise, it returns poison.
Now we define semantics of load/store operations. Function Load(M,p, sz,a) returns the bits

that correspond to pointer p if derefM (p, sz) and if p is a-aligned (i.e., p %a = 0). load yields v if

Load(M,p, sz,a) returns a value v , or UB otherwise. The store operation Store(M,p,b,a) stores the
bit representation b into the memoryM and returns the updated memoryM ′

if p is dereferenceable

and a-aligned. store is UB if Store(M,p,b,a) fails, and updates the memory toM ′
otherwise.

4.10 Justifying Transformations in Practice
We now illustrate how our semantics can be used in practice in a compiler, and how one can

informally reason about the correctness of optimizations. For example, we would like to justify

that the following transformation performed by GVN is correct:

char *p = malloc(4);
int v = (int)p;
if (v == 10)

*(int*)v = 0;

⇒

char *p = malloc(4);
int v = (int)p;
if (v == 10)

*(int*)10 = 0;

Under our semantics, this transformation is legal because integers do not track provenance.

Moreover, the address of object p is observed by the comparison, and therefore the store through

(int*)10 is guaranteed to write to object p.
A useful way to think about this is that our semantics effectively take control-flow dependencies

into account when determining which objects have had their addresses observed. In our example,

the address of p is observed within the then block since it was used in a comparison along the

control-flow that leads to the block. Hence, we allow (int*)10 to refer to object p. This sort of
reasoning can be directly implemented in a compiler.

4
Redundant load-store pair elimination means removing ‘v = load i64 ptr; store v, ptr’. If reading a logical pointer

as integer implicitly casts the pointer, removing this load-store pair would eliminate a cast and hence be illegal. This is

discussed further in Section 8.
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4.11 Preventing Accesses via Guessed Addresses
We now show how twin allocation semantics prevents unobserved blocks from being accessed via

guessed addresses. This aspect is essential to enable compiler optimizations, otherwise any pointer

could potentially access any object.

A block is unobserved if any value derived from (i.e., any value that has data or control dependence

on) the block’s logical address created at allocation is never used in any of the address-observing
operations: being (i) casted to an integer, (ii) compared to a physical address, and (iii) subtracted
to/from a physical address. For example, in the following program, the first block of size 10 is

unobserved because its address a is never used in an address-observing operation, while the second

block of size 5 is observed because its address b is compared to the physical address 0x200.

1: char *a = malloc(10);
2: char *b = malloc(5);
3: if (b == (char*)0x200)
4: *(char*)0x100 = 1;

A guessed address is necessarily a physical address. We will now show that in the twin allocation

model, compilers can safely assume that unobserved blocks cannot be accessed via guessed addresses.

Since compilers are allowed to assume anything when the source program has an execution raising

UB, it suffices to show that whenever an unobserved block b is accessed via a guessed address p
in some execution, there is an alternative execution raising UB. The alternative execution is to

take the address of the twin block b ′ instead of that of b at allocation. After allocating blocks b and

b ′, the twin executions (i.e., the original and the alternative) have exactly the same program state

except that:

(i) the logical address created at allocation corresponds to a different underlying machine address

(i.e., that of b and b ′ respectively), and
(ii) validity of b and b ′ are swapped.

Condition (i) does not make any difference in the twin executions because the machine address

is only ever used in address-observing operations. More specifically, our semantics is carefully

designed in such a way that all operations other than the address-observing ones are independent

of the underlying machine address of any logical address. Thus only condition (ii) can make a

difference during execution. This can happen only when one of the blocks b and b ′ is accessed via

a physical address. Since only one of b and b ′ is accessible in each of the twin executions, at least

one of the executions will raise UB when block b is accessed via a guessed address.

For instance, in the above example, suppose that at line 1, two blocks of size 10 are allocated at

0x100 and 0x150 with the former activated. Then at line 4 the block is successfully accessed via

the physical address 0x100, while in the twin execution where the block at 0x150 is activated, the

access at 0x100 at line 4 raises UB. Therefore, the compiler can conclude that the store at line 4

cannot access object a.
Finally, we discuss why allocating two blocks is necessary even though one of them is always

made invalid. The reason is because in order to have equivalent twin executions modulo accesses via

guessed addresses as described above, the twin executions should have identical memory layouts.

For example, instead of allocating two blocks, consider allocating a single block in such a way that

there is enough space left for allocating another one of the same size; and raising out-of-memory

if such allocation is not possible. In this semantics, one may think that we can still simulate a

twin execution as described above using the free space. However, it does not work due to different

memory layouts. Specifically, in the above example program, suppose that before executing line 1,

the memory only has two segments of free space: 0x100 ∼ 0x109 and 0x200 ∼ 0x209. Then at line

1, the block of size 10 can be allocated at 0x100 or 0x200 because there is enough space left for
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allocating another one. Then at line 2, the block of size 5 can be allocated at 0x200 or 0x205 in the

former case and at 0x100 or 0x105 in the latter case because there is enough space left. Among

those twin executions, one of them accesses the unobserved block of size 10 via the guessed address
0x100 at line 4 while the others do not reach line 4 thereby raising no UB. Therefore, with this

simpler semantics the compiler would (annoyingly) have to conclude that line 4 can access object a.

4.12 Sometimes Two Blocks Are Not Enough
Justifying the correctness of some optimizations requires more than two blocks. We give an example

of an optimization that requires triple allocation (N = 2 in our semantics). This optimization removes

single observations of addresses of local variables through comparison with a function argument.

For example, in the following function on the left, if the address of c is unobserved except at line 3,

the comparison can be folded to false to get the optimized code on the right. This enables further

optimizations since the address of c becomes completely unobserved in the target code and thus

the compiler can assume that the block c cannot be accessed via a guessed address.

1: void foo(int i) {
2: char c[4];
3: if (c == (char*)i) {
4: ...
5: } else {
6: *(char*)0x200 = 0;
7: }
8: ...
9: }

⇒

void foo(int i) {
char c[4];
if (false) {
...

} else {
*(char*)0x200 = 0;

}
...

}

The reason why two blocks are not enough for this optimization is that c can be accessed in line

6 of the original code when memory has only space for two blocks: The observation of the address

of c in line 3 can forbid one of the twin executions from reaching line 6, which does not happen in

the optimized code. To see this clearly, suppose that i = 0x100 and the twin blocks for c can be

only allocated at 0x100 and 0x200 because the memory had space for just those blocks. Then, in

the original code, none of the twin executions triggers UB for the guessed access at line 6, while

in the optimized code, the execution with c = 0x100 triggers UB at line 6 now that guessing is

prevented, as usual, by the twin allocations.

However, if we have triple twin allocations, c cannot be accessed via a guessed address even

if one of the triple twin executions is ruled out by a single observation: We still have two twin

executions left. For example, in the above setting, if c is allocated at 0x100, 0x200 and 0x300, in
the original code the execution with c = 0x300 triggers UB for the guessed access at line 6.

We can argue as follows that triple twin allocations enable the optimization above for a fresh

block cwhen the address of c is observed only once in the comparison. If one of the triple executions

in the optimized code accesses c via a guessed address (causing UB in the optimized code), we can

always trigger UB for the guessed access in one of the three possible executions of the original

code as discussed above. If not, the triple executions behave exactly the same in the optimized code

because there is no observation of the address of c, and the behavior is simulated by one of the

triple executions of the original code that makes the comparison c == p false.

Finally, we note that over-approximating the number of twin blocks is sound. However, as we

have seen in the previous example, under-approximating it is not. In practice, due to the limited

reasoning power of compilers in general, and LLVM in particular, we believe 3 blocks are sufficient.
5

5
We are only aware of one optimization in LLVM and GCC that may require more than three blocks, and further investigation

is ongoing to determine whether it is valid (see http://llvm.org/PR35102).
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5 IMPLEMENTATION
We implemented two prototype versions of LLVM to study the impact of adapting the compiler to

match the new semantics. First, we removed optimizations that are invalid in our semantics in order

to create a version of LLVM that soundly implements its memory model. We confirmed this version

fixes all the related bugs we have found. Second, we modified the “sound” compiler to regain some

performance by adding optimizations that were not previously supported. We implemented our

prototypes using LLVM 6.0.
6

Making LLVM sound. LLVM propagated pointer equalities in several places; these had to be

disabled. For example, InstSimplify (a peephole optimizer that does not create new instructions)

transforms the IR equivalent of (x == y) ? x : y into y. In our semantics this transformation is

correct for integers, but not for pointers, because it breaks data-flow provenance tracking. Similarly,

we turned off GVN for pointer-typed variables.

A second kind of transformation that we had to disable were some integer-pointer conversions.

LLVM (and GCC to some extent) treat a round-trip of pointer-to-integer and then integer-to-pointer

casts as a no-op. This is incorrect under our semantics, and we removed this transformation—the

IR equivalent of turning (int*)(int)p into p—in InstSimplify. Also related is a transformation

from InstCombine (a peephole optimizer that potentially creates new instructions), which rewrites

(int)p == (int)q into p == q for pointers p and q. This transformation was also removed, since

comparing physical pointers is not equivalent to comparing logical pointers in our semantics.

A third kind of change is related to compiler-introduced type punning. There are optimizations

in LLVM that transform, for example, load/store instructions of pointers into that of pointer-sized

integers. This includes GVN when equivalent variables have different types, transforming a small

memcpy into a pair of load/store instructions (e.g., where the intermediate value is an integer, and

the target type is a pointer), etc. As we will discuss in Section 8, we had to disable all of these.

Finally, we disabled a few additional transformations that became invalid in our semantics

including folding a pointer comparison against a stack-allocated object within a loop and a handful

of peephole optimizations that changed pointer provenance. In total, we changed 419 lines of code.

Regaining performance. Making LLVM sound with respect to our memory model caused some

small performance regressions in SPEC CPU 2017. We created a second prototype that attempts to

regain that performance by adding optimizations that conform to our new semantics.

We changed how LLVM/Clang handles C/C++ pointer subtractions. The unmodified Clang

lowers pointer subtraction into the IR equivalent of (int)p - (int)q. This is sound under our

model, but since LLVM is very conservative when it encounters these kind of casts (it assumes the

pointers escape), we unnecessarily lose precision in, e.g., alias analysis. The problem becomes even

worse in our “sound” prototype. We added the psub instruction for pointer subtraction (described in

Sec. 4.7) and modified Clang to use it. Since in our semantics psub does not escape if both operands

are logical pointers, more aggressive optimization are now allowed.

We augmented alias analysis so that it becomes more precise when it encounters integer-to-

pointer casts. Alias analysis can now conclude that a pointer cast from integer never aliases an

unescaped object. Moreover, we also improved the analysis to assume that the pointer comparison

instruction does not make its operands escape if they are both logical pointers.

Finally, we re-enabled GVN for pointer types for the following specific caseswhere it is guaranteed

to be sound (for pointers p and q in the same equivalence class, where p is replaced with q):

• q is NULL or the result of an integer-to-pointer cast.

• p and q are logical pointers, and both are either dereferenceable or point to the same block.

6
https://github.com/snu-sf/llvm-twin and https://github.com/snu-sf/clang-twin
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(a) After making LLVM sound
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(b) Sound prototype + optimizations

Fig. 7. Change in run time of SPEC CPU 2017 for our two prototypes. Higher bars indicate speedup relative
to baseline LLVM, lower bars indicate slowdown.

• p and q are both computed by the gep inbounds with same base pointer.

• Either p or q is computed by a series of gep inbounds with positive offsets, based on the

same base pointer.

The number of lines changed in this prototype against the previous one totals about 1274 lines.

Overall, our “sound and fast” prototype requires changing less than 1700 lines of code in LLVM to

make it sound against our memory model with minor impact on run time performance.

6 PERFORMANCE EVALUATION
For our memory model to have a chance of being adopted, we must establish that it does not

interfere with the quality of generated code.

6.1 Setup
We used three machines, with the following CPUs, to measure performance: (1) Intel i3-6100

(Skylake), (2) Intel i5-6600 (Skylake), and (3) Intel i7-7700 (Kaby Lake). All machines have 8GB

RAM and Ubuntu 16.04 installed. To get more consistent results, Intel Hyperthreading, TurboBoost,

SpeedStep, and Speed Shift were disabled, and the CPU scaling governor was set to “performance.”

We also disabled non-essential system services and address space layout randomization.

As benchmarks, we used SPEC CPU 2017 and the LLVM Nightly Test suite (293 C/C++ bench-

marks). For SPEC CPU, we used only the SPECrate benchmarks because of RAM limitations (SPEC-

speed requires more memory than our machines had). The Fortran benchmarks were compiled

first with gfortran.
Each benchmark was compiled with -O3, executed three times, and the median running time is

used to compare performance. To run LLVM Nightly Tests, we used the cpuset utility to pin the

benchmark to a single core. Unlike SPEC, these short-running benchmarks were seeing significant

variance due to migrations between cores. Also, we used a RAM disk to minimize fluctuations due

to disk access time. Some benchmarks in the LLVM suite have short running time, so using this

setting is helpful to stabilize the results.

When comparing performance for LLVM Nightly Tests, we exclude benchmarks where our

changes to Clang and LLVM did not result in any changes to the resulting object code. Some

benchmarks had high performance variation (> 5%) across runs, most of these were benchmarks

that run too quickly for accurate timing. We excluded these from our results as well.

6.2 Performance of Generated Code
Performance after making LLVM sound. Figure 7a shows the effect that our first (sound but

unoptimized) prototype had on the performance of SPEC CPU 2017. On average, across all bench-

marks and machines, we observed a 0.2% slowdown. The worst slowdown was a 1.75% regression
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in xalancbmk on machine 2. There was also a 0.5 ∼ 1.5% consistent slowdown in gcc, mcf, and

xalancbmk.

For the LLVM Nightly Tests, the worst slowdown was 4.3%, and the best speedup was 4.0%. On
average, we observed a 0.3% slowdown. One benchmark, Oscar, had a huge speedup (25%). This

was because our fixes prevented loop vectorization from working in this case, which happened to

make the benchmark run faster. This benchmark is omitted in the numbers mentioned before.

In the LLVM Nightly Tests, only 25% (464/1853) of object files were different than when compiled

with the baseline compiler, and only 27% (80/293)of benchmarks had any object file changed.

Across all of our benchmarks, the baseline version of LLVM’s GVN pass performs about 24,700

replacements. About 28% of these correspond to propagation of pointer equalities, with the re-

maining being propagation of integer equalities. Of the pointer replacements, 44% correspond to

replacing a pointer with NULL, which is a sound transformation under our semantics (even though

it was disabled in this prototype).

Performance after adding optimizations. Fig. 7b shows the change in performance of SPEC CPU

2017 for our second prototype (“sound and fast”) relative to baseline LLVM. The three changes that

contributed the most to recovering lost performance were as follows. Adding psub changed the

average slowdown on SPEC from −0.2% to −0.1%. The main winners due to this optimization were

mcf and xalancbmk, having a 1.7% and 1.1% speedup, respectively.

We found “jpeg-6.a” in LLVM Nightly Tests showed 2.2% slowdown. It was because remov-

ing transformations from load/store of pointers into load/store of pointer-sized integers blocked

SLP vectorization of heterogeneous types. We can support this by allowing type punning be-

tween a physical pointer and integer. Formally, we can define load of integer i as pointer to yield

Phy(i, 0, ∅,None) rather than poison, and load of Phy(i, 0, ∅,None) as integer to return i . With this

update, it is valid to canonicalize load/store of pointer-sized integers into load/store of pointers.

After the canonicalization, SLP vectorization can fire because load/stores now have homogeneous

types. We implemented this canonicalization pass before SLP vectorization and checked that the

slowdown disappeared. It did not, however, improve the performance of the SPEC benchmarks nor

the average slowdown of the LLVM Nightly Tests. This canonicalization can be a good workaround

for reenabling vectorization, but in the future we would like to pursue more generalized solution

for this, as discussed in Section 8.

Finally, reactivating GVN for safe cases removed the slowdown in perlbench and cactuBSSN.

With the Nightly Tests, the performance regressed slightly, increasing the average slowdown to

0.07%.
This experiment shows that it is possible to make LLVM adhere to our memory model without

significant performance regression. In fact, some benchmarks get a small performance improvement.

6.3 Number of Instructions
We investigated how the number of pointer cast instructions (inttoptr / ptrtoint) and psub instruc-

tions evolved with our modifications. Table 1 shows the total number of instructions over all the

benchmarks, when compiled without optimizations (-O0) and with optimizations (-O3).
In the first column, we have the numbers for the baseline (vanilla LLVM). In the second column,

we can observe the number of casts does not increase significantly after disabling the (incorrect)

optimization that removes the round-trip cast of (int*)(int)p to p, for a pointer p.
The third column shows the result for our first prototype, where all incorrect optimizations were

removed. The number of inttoptr instructions is reduced because we disabled the introduction

of type punning by the optimizer. The increase in the number of ptrtoint casts is the result of
removing unsound optimizations like the one that rewrites (int)p == (int)q into p == q.
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Table 1. Number of instructions with different prototypes

Baseline

i2p(p2ip)
fold disabled

Sound add psub

-O0 Total 21,219,982 21,219,982 21,219,982 21,194,610

inttoptr 1,554 1,554 1,554 1,554

ptrtoint 39,726 39,726 39,726 14,338

psub 0 0 0 12,806

-O3 Total 15,015,064 15,030,020 14,950,405 14,750,101

inttoptr 29,976 44,255 2,580 2,573

ptrtoint 38,249 45,425 64,585 9,431

psub 0 0 0 29,117

In the last column, we show the data for a prototype that uses the new psub instruction. Not

only are the number of casts reduced in the non-optimized build (since we changed Clang to lower

pointer subtraction into psub), but the optimized build also shows a reduction since we also added

support for the optimizers to create psub when needed.

Finally, we note the number of cast instructions is still larger in the optimized build since

optimizations like loop unrolling and inlining can soundly duplicate instructions.

6.4 Compile Time
We measured the time it takes to compile each file of all the benchmarks in an optimized build. We

exclude files with a very small compile time (< 0.15 s) in these results.

In the first prototype, the average compile time had a 0.1% slowdown. The worst slowdown was

10.5% and the best speedup 13.9%. For the second prototype, we observed an average slowdown of

compilation time of 1.1%. The worst slowdown increased to 9.3%. A reason for the second prototype

regressing further on the compilation time is due to extra analysis required to propagate pointer

equalities. Also, our prototype implementations were not optimized to reduce compilation time.

7 RELATEDWORK
Much work has been done on defining and clarifying the semantics of C, including the semantics of

pointer provenance [Chisnall et al. 2016; Hathhorn et al. 2015; Krebbers 2013; Krebbers and Wiedijk

2015; Memarian et al. 2016; Memarian and Sewell 2016a,b]. However, focusing on source language

semantics involves different considerations than that of a compiler IR. For example, many of the

optimizations presented in this paper are not sound under the proposed C semantics. That is not

a problem, as long as C can efficiently be compiled to an IR like LLVM’s that allows the desired

optimizations.

CompCert [Leroy 2009; Leroy and Blazy 2008] is a compiler for a subset of C that is formalized

in Coq. It defines a pointer as a pair of block id and offset, which is equivalent to our logical pointer.

CompCert does not, however, support pointer-to-integer casts, thereby avoiding the problems we

address in this paper. Ševčík et al. [2013] extend CompCert with a weak memory model.

Vellvm [Zhao et al. 2012] formalizes the LLVM IR in Coq. It adopts CompCert’s memory model,

inheriting its weaknesses.

Besson et al. [2014; 2015; 2017a; 2017b] propose an extension of the CompCert memory model

supporting casts between integers and pointers. When a pointer is cast to an integer, a fresh

symbol is created to represent the underlying physical address and henceforth keep the result of

arithmetic or bitwise operations over it as symbolic expressions. When a concrete value is needed

for a symbolic expression, if it uniquely determines an integer value, then that value is returned;

otherwise, poison is returned. They verify CompCert optimizations and programs performing

bitwise operations on pointers with their memory model. However, their model is limited in practice
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Table 2. Comparison between different memory models: whether they enable high-level memory opti-
mizations (such as store forwarding), whether they support integer-to-pointer casts, whether they support
languages with low-level pointer manipulation (such as doing XORs of pointers), whether they support
all standard integer optimizations (such as equality propagation and reassociation), and whether pointer
arithmetic and cast operations are pure (since otherwise they constrain movement of such instructions).
† does not support cast of p + n.

high-level mem int-to-ptr low-level ptr all integer ptr arith

optimizations casts manipulation optimizations is pure

Flat ✓ ✓ ✓ ✓
Memarian et al. ✓ ✓ ✓
CompCert ✓ ✓ ✓
Besson et al. ✓ ✓ ✓
Kang et al. ✓ † ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓

because observing the underlying address of a pointer is not allowed. For example, using a pointer

value as a hash key is undefined in their model.

Kang et al. [2015] proposed a low-level memory model that supports pointer-to-integer casts.

However, the model does not support casting a pointer one-past-the-end of an object to an integer

and back: this round-trip resulted in poison in their semantics, while it is well-defined in C.

Moreover, in their semantics, ptrtoint is an effectful operation that cannot be removed even if

the result is not used, and inttoptr is not freely movable across malloc and free. Our work fixes

both of these problems by combining logical and physical pointers in one memory model.

Table 2 shows a summary comparing the different memory models and ours.

Lee et al. [2017] proposed adjusting the semantics of poison and undef in order to fix some

problems in LLVM. They do not address problems with pointer values and thus their work is

orthogonal to ours, and in fact we reuse their value semantics for our work.

Both Alive [Lopes et al. 2015] (an automatic peephole optimization verifier) and Souper [Sas-

nauskas et al. 2017] (a superoptimizer) encode the semantics of LLVM IR into SMT. Souper currently

does not support memory operations, and Alive does not support integer-to-pointer casts. Both

could be extended with our new memory model in order to support a larger set of transformations.

Verification tools for C/C++ programs often use memory models that try to split objects into

different heaps to speedup verification time (e.g., [Gurfinkel and Navas 2017; Wang et al. 2017]).

However, usually these models either do not support integer-to-pointer casts or they fallback

to a flat memory model when these casts are used. The trade-offs for IR and verification tools

memory models are different, since verification tools can soundly lose precision for uncommon

cases, for example, while for compiler IRs it cannot since the IR memory model needs to justify

the correctness of transformations in all cases. SMT-based verification have highly-optimized SMT

encodings of their memory models, while ours is not trivial to encode efficiently.

8 DISCUSSION AND FUTUREWORK
Type Punning. In our semantics, loading, e.g., from a memory location that contains a pointer at

an integer type results in poison due to type punning. One may wonder why we did not specify

the load to, instead, perform an implicit pointer-to-integer cast. Disallowing implicit pointer casts

is necessary to justify load-store elimination:

int q, **x = malloc(sizeof(int*));
*x = &q;
int i = *(int*)x // implicit pointer-to-integer cast
*(int*)x = i; // remove; it is redundant
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So, while the original code performed a pointer-to-integer cast and then wrote back an integer (or,

equivalently, a physical pointer with no provenance information), the changed program leaves

the original provenance information intact. In other words, load-store elimination can result in

increasing provenance restrictions on pointers, which can in turn result in introducing UB. To fix

this, we let load return poison instead of performing an implicit cast.

The downside of disallowing implicit casts is that there is no longer a type that can actually hold

any data that can be present in memory. LLVM typically uses integer types for that purpose but, as

discussed above, that does not work in our semantics. One option to fix this is adding a new “data”

type that only permits a few bitwise operations, and that can hence hold both pointer and integer

bits. We intend to pursue this avenue further in the future.

Non-deterministic Values. We have defined some operations to yield a non-deterministic result,

e.g., icmp ule of pointers of different blocks. This blocks duplication of instructions since they

could then return different results. Solutions to this problem could include use of undef instead,
which has its drawbacks [Lee et al. 2017], or explore the use of “entangled” instructions that need

to be folded together. We leave this exploration for future work.

Out of memory. A technical problem with our memory model is that any transformation that may

eliminate an out-of-memory condition is unsound. However, the necessary conditions for achieving

miscompilation via this unsoundness are difficult to meet. First, the compiler must perform a

transformation based on knowledge that a program path triggers out-of-memory (LLVM does not

do this at present, and seems unlikely to do so in the future). Second, it would need to perform an

optimization eliminating the out-of-memory condition (these transformations, such as eliminating

unused allocations, are performed routinely). Designing a memory model that is sound in this

respect seems challenging and it is not clear the result would be useful in practice.

9 CONCLUSION
Languages like C, C++, and Rust give the programmer low-level control over how memory is

arranged and accessed while also giving the compiler freedom to perform high-level memory

optimizations. This is challenging and current toolchains based on LLVM and GCC are not always

able to strike the right balance between performance of generated code and strength of guarantees

made to programs. Part of the problem is that the memory models for the internal representations

in these compilers—where high-level optimizations are performed—are informally specified and

thus easily misunderstood.

We created a new memory model for LLVM IR that we believe provides sufficiently strong

guarantees that it can be efficiently targeted by front-ends while also permitting many desirable

optimizations. We have implemented a prototype of this model and have shown that the implemen-

tation is not invasive, that code quality remains good, and that several known miscompilations due

to the current, informal memory model are fixed.
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A APPENDIX: END-TO-END MISCOMPILATION BY BOTH LLVM AND GCC
This C program is miscompiled by both GCC and LLVM:

7

$ cat b.c
void f(int *x, int *y) {}

$ cat a.c
#include <stdint.h>
#include <stdio.h>

void f(int *, int *);

int main(void) {
int a = 0, y[1], x = 0;
uintptr_t pi = (uintptr_t)&x;
uintptr_t yi = (uintptr_t)(y + 1);
int n = pi != yi;

if (n) {
a = 100;
pi = yi;

}

if (n) {
a = 100;
pi = (uintptr_t)y;

}

*(int *)pi = 15;

printf("a=%d x=%d\n", a, x);

f(&x, y);

return 0;
}

$ clang-5.0 -Wall -O2 a.c b.c ; ./a.out
a=0 x=0
$ gcc-7 -Wall -O2 a.c b.c ; ./a.out
a=0 x=0

The result produced by both compilers is incorrect. There are only two possible outcomes,

depending on whether x and y are allocated consecutively (n is false) or not (n is true):

• Case 1: n is true and the program must print

a=100 x=0
• Case 2: n is false and the program must print

a=0 x=15

7
Please note that the program may produce different results on different platforms, since the miscompilation is only

observable with some stack layouts. Changing the order of declaration of variables x and y is often sufficient to observe the

miscompilation.
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No other output is permitted. In both compilers, the root cause is insufficiently conservative

treatment of a pointer derived from an integer. The problem is difficult to solve without throwing

away desirable pointer optimizations. This program has been reported in the bug tracking systems

for both compilers. The semantics given in this paper solve this problem, and we have confirmed

that our prototype fixes this bug.

B APPENDIX: SAFE RUST PROGRAMMISCOMPILED BY LLVM
This function uses low-level language features, but it is still in the safe subset of Rust. It is miscom-

piled because of a bug in LLVM’s GVN optimization:

pub fn test(gp1: &mut usize, gp2: &mut usize, b1: bool, b2: bool) -> (i32, i32) {
let mut g = 0;
let mut c = 0;
let y = 0;
let mut x = 7777;
let mut p = &mut g as *const _;

{
let mut q = &mut g;
let mut r = &mut 8888;

if b1 {
p = (&y as *const _).wrapping_offset(1);

}
if b2 {

q = &mut x;
}

*gp1 = p as usize + 1234;
if q as *const _ == p {

c = 1;
*gp2 = (q as *const _) as usize + 1234;
r = q;

}
*r = 42;

}
return (c, x);

}

This function first assigns a reference of g to q. It then creates a temporary object holding the

number 8888 and r is assigned a reference to it. Function wrapping_offset performs pointer

arithmetic that can safely go out of bounds of the base object (equivalent to LLVM’s gep without

inbounds). If b2 is true, q is assigned a reference to x. Therefore, if the program enters in the

following branch as well, r is assigned a reference to x, and thus the following store through r (*r
= 42;) overwrites the value of x.

When called with b1 and b2 set to true, the optimized version of this code returns c = 1, x =
7777. This outcome is impossible; legal results are c = 0, x = 7777 and c = 1, x = 42.

The miscompilation happens when LLVM’s GVN pass exploits the condition of the last if
statement and incorrectly replaces all uses of q within that branch with p. After the replacement,

*r is assumed not to touch x because r now either contains a reference to the initial temporary

object or to one of the references assigned to p (based on g and y only). Therefore, x = 7777 is

constant-propagated to the return statement, which causes the wrong output.
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C APPENDIX: COQ FORMALIZATION AND PROOF
We formalized our memory model in Coq and proved several key claims of this paper. The code

is available from https://github.com/snu-sf/llvmtwin-coq. Note that we omit function calls and

returns to simplify the formalization.

C.1 Definitions
The memory model is specified in file Memory.v. It differs in two ways from the presentation in this

paper: (1) it does not support address spaces for brevity, and (2) memory maintains the last used

block id, which is used to create fresh ids on allocation. The number of twin blocks (|P |) is set to 3.

Well-formedness of a memory block is defined in Ir.MemBlock.wf, and states, e.g., that |P |
is always 3, and the size of blocks is larger than zero. Well-formedness of memory is defined

in Ir.Memory.wf and states, e.g., that all existing memory blocks are well-formed, and alive

blocks have no overlapping addresses. Well-formedness of a state is defined in Ir.Config.wf, and
includes assertions like the program counter is valid, memory is well-formed, etc. We proved that

the execution of any instruction preserves the well-formedness of the input state.

The small-step semantics is defined in fileSmallStep.v. Given an input state, a step can result in

one of the following results: (1) success, if the execution of the following instruction was successful

and yielded a new state, (2) UB, if the program raised undefined behavior, (3) OOM, if the program

raised out-of-memory, and (4) halt, if the program finished.

Two states s and s ′ are twin with respect to a memory block l iff they are equal except for the

configuration of l where the addresses of l in s ′ (P ′
) are a permutation of those of s (P ) and the

enabled address is different (i.e., P0 , P ′
0
).

A block’s address is observed if a pointer to that block is given as argument to one of the following

instructions: ptrtoint, psub, or icmp. Moreover, for the latter two instructions, the other argument

must be a physical pointer. A pointer is guessed if it points to an unobserved block.

C.2 Proofs
We proved the following theorems in Coq:

Theorem C.1 (Twin allocation forbids pointer guessing). Given two twin states s and s ′

w.r.t. l , where the next instruction dereferences a guessed pointer to l , the execution of either s or s ′

triggers UB.

Two additional theorems are proved that establish the usefulness of twin states:

Theorem C.2 (Malloc). malloc either returns a NULL pointer, or a logical pointer Log(l,o).
Moreover, the states yielded by the small-step execution are all twin w.r.t. l .

Theorem C.3. Given two twin states s and s ′ w.r.t. l , the small-step execution of s and s ′ where the
next instruction does not dereference a guessed pointer and does not observe block l either (1) halts,
triggers UB or OOM, or (2) is successful and the successor states of s are twin with those of s ′.

We now show that certain instructions can be freely moved across (de)allocation functions:

TheoremC.4 (Instruction reordering). Instructions icmp eq, icmp ule, psub, inttoptr, ptrtoint,
and gep can be moved acrossmalloc and free in both directions (upward and downward). Moreover, a
program P ′ obtained from P by doing such reordering is equivalent to P .

Finally we prove sufficient conditions for soundness of GVN:

Theorem C.5 (Soundness of GVN for pointers). The four conditions given in Section 5 that state
when it is sound to replace a pointer p with another pointer q are correct, i.e., the pointer replacement
is a refinement.
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