
An Intermediate Language To Formally Justify
Memory Access Reordering

Ralf Jung
Advisors: Prof. Dr. Sebastian Hack, Sigurd Schneider

Bachelor Thesis Talk

Department of Computer Science - Universität des Saarlandes

May 16th, 2013

1



Outline

1 Introduction

2 Memory Model

3 Type System

4 Limitations, Conclusion

2



Intermediate languages

Abstract away from unnecessary
details of source language
Discard precise order of
computations
Program stored as directed graph
Preserve relevant information:
Which operation is performed on
which operand
All linearisations respecting the
order are equivalent
Optimisations can choose from all
linearisations

x = 3+5;
y = 2*4;
z = x-y;

3



Intermediate languages

Abstract away from unnecessary
details of source language
Discard precise order of
computations
Program stored as directed graph
Preserve relevant information:
Which operation is performed on
which operand
All linearisations respecting the
order are equivalent
Optimisations can choose from all
linearisations

x = 3+5;
y = 2*4;
z = x-y;

3 5

+

2 4

∗

−

3



Intermediate languages

Abstract away from unnecessary
details of source language
Discard precise order of
computations
Program stored as directed graph
Preserve relevant information:
Which operation is performed on
which operand
All linearisations respecting the
order are equivalent
Optimisations can choose from all
linearisations

3 5

+

2 4

∗

−

a = 2*4;
b = 3+5;
c = b-a;

3



Memory operations

This does not work well for memory operations:

store(a, v);
store(b, w);

store(b, w);
store(a, v);

Without further knowledge, their order must be preserved.

a v

store b w

store

b w

store a v

store

However, if a and b never take the same value, the two programs
are equivalent.

4



Memory operations

This does not work well for memory operations:

store(a, v);
store(b, w);

store(b, w);
store(a, v);

Without further knowledge, their order must be preserved.

a v

store b w

store

b w

store a v

store

However, if a and b never take the same value, the two programs
are equivalent.

4



Memory operations

This does not work well for memory operations:

store(a, v);
store(b, w);

store(b, w);
store(a, v);

Without further knowledge, their order must be preserved.

a v

store b w

store

b w

store a v

store

However, if a and b never take the same value, the two programs
are equivalent.

4



Contribution: IL/M

Intermediate language based on IL/F which can express
absence of dependencies between memory operations
No memory safety
Type system supporting proofs of correctness for
transformations which de-linearise memory accesses

Based on knowledge about pointer values (alias information)
Formal semantics and proof of correctness

Expected benefits

Simplify analyses and transformations
More opportunities for optimisation

5



Outline

1 Introduction

2 Memory Model

3 Type System

4 Limitations, Conclusion

6



Functional memory model

Memory is an explicit object
Immutable mapping of locations to values
Memory operations manipulate memories similar to how
integers are manipulated by arithmetic operations
Effect of memory operations is completely described by
operands

m a v

store b w

store

let m’ = store m a v in
let m’’ = store m’ b w in
...

7



Functional memory model

a v

store b w

store

store(a, v);
store(b, w);

m a v

store b w

store

let m’ = store m a v in
let m’’ = store m’ b w in
...

7



Functional memory model

a v

store b w

store

store(a, v);
store(b, w);

m1 a v

store m2 b w

store

let m1’ = store m1 a v in
let m2’ = store m2 b w in
...

7



Realisability

Functional stores can express programs which cannot be
directly simulated on real machines:

m a v

storea w

store

a

load

let m’ = store m a v in
let m’’ = store m a w in
let x = load m’ a in
...

Naïve translation: ignore memory argument
Resulting program is incorrect

Definition
A program permitting a naïve translation can be realised.

8



Realisability

Functional stores can express programs which cannot be
directly simulated on real machines:

m a v

storea w

store

a

load

let m’ = store m a v in
let m’’ = store m a w in
let x = load m’ a in
...

Naïve translation: ignore memory argument
Resulting program is incorrect

Definition
A program permitting a naïve translation can be realised.

8



Outline

1 Introduction

2 Memory Model

3 Type System

4 Limitations, Conclusion

9



Approach

Type system for memory objects
Based on alias information
Well-typed programs are realisable, i.e., they can easily be
translated to machine code
If a program is well-typed after de-linearising memory
operations, it is semantically equivalent to the original program

10



Example

let m’ = store m a v in
let m’’ = store m’ b w in
let x = load m’’ c in ...

m

store

store

load

11



Example

{a � b} let m’ = store m a v in
{a � b} let m’’ = store m’ b w in
{a � b} let x = load m’’ c in ...

m

store

store

load

11



Example

{a � b} let m1, m2 = split m {a} in
{a � b} let m1’ = store m1 a v in
{a � b} let m2’ = store m2 b w in
{a � b} let m’ = merge m1’ m2’ in
{a � b} let x = load m’ c in ...

m

split

store store

merge

load

12



Memory types

Keep track of variables split to a separate
memory

These variables form the focus
The memories containing these variables
are called focus memories
Type: Set of variables used to create it

All the other locations remain in the
panorama memory

Real-world alias information is incomplete,
so there can be locations we know nothing
about
There is always exactly one panorama
memory
Type: >

Memories may not be used again after
store, split, merge to keep available
memories pairwise disjoint

m

split

store store

merge

load

13



Example

m focus
> {}

{a � b} let m1, m2 = split m {a} in

m1 m2 focus
{a} > {a}

{a � b} let m1’ = store m1 a v in
{a � b} let m2’ = store m2 b w in

m1’ m2’ focus
{a} > {a}

{a � b} let m’ = merge m1’ m2’ in

m’ focus
> {}

{a � b} let x = load m’ c in ...

m

split

store store

merge

load

14



Example

m focus
> {}

{a � b} let m1, m2 = split m {a} in

m1 m2 focus
{a} > {a}

{a � b} let m1’ = store m1 a v in
{a � b} let m2’ = store m2 b w in

m1’ m2’ focus
{a} > {a}

{a � b} let m’ = merge m1’ m2’ in

m’ focus
> {}

{a � b} let x = load m’ c in ...

m

split

store store

merge

load

14



Example

m focus
> {}

{a � b} let m1, m2 = split m {a} in

m1 m2 focus
{a} > {a}

{a � b} let m1’ = store m1 a v in
{a � b} let m2’ = store m2 b w in

m1’ m2’ focus
{a} > {a}

{a � b} let m’ = merge m1’ m2’ in

m’ focus
> {}

{a � b} let x = load m’ c in ...

m

split

store store

merge

load

14



Example

m focus
> {}

{a � b} let m1, m2 = split m {a} in

m1 m2 focus
{a} > {a}

{a � b} let m1’ = store m1 a v in
{a � b} let m2’ = store m2 b w in

m1’ m2’ focus
{a} > {a}

{a � b} let m’ = merge m1’ m2’ in

m’ focus
> {}

{a � b} let x = load m’ c in ...

m

split

store store

merge

load

14



Accessibility

Restrictions on memory accesses to provide semantic
guarantees
store and load require proofs that the affected location is
accessible in the given memory

Accessibility is defined based on the type of the memory
To access focus memory: Prove equality to one variable from
memory domain
To access panorama memory: Prove inequality to all focus
variables
Proofs must be derived from alias annotation
Only if the (in)equality can be statically derived, the access is
well-typed

15



Example: Accessibility

{a � b} let m1, m2 = split m {a} in
{a � b} let m1’ = store m1 a v in

Access to a in memory of type {a}:
a ∼= a trivially holds

{a � b} let m2’ = store m2 b w in

Access to b in panorama, focus is {a}:
a � b holds by annotation

{a � b} let m’ = merge m1’ m2’ in
{a � b} let x = load m’ c in ...

Access to c in panorama, focus is {}:
Nothing to show

m

split

store store

merge

load

16



Example: Accessibility

{a � b} let m1, m2 = split m {a} in
{a � b} let m1’ = store m1 a v in

Access to a in memory of type {a}:
a ∼= a trivially holds

{a � b} let m2’ = store m2 b w in

Access to b in panorama, focus is {a}:
a � b holds by annotation

{a � b} let m’ = merge m1’ m2’ in
{a � b} let x = load m’ c in ...

Access to c in panorama, focus is {}:
Nothing to show

m

split

store store

merge

load

16



Example: Accessibility

{a � b} let m1, m2 = split m {a} in
{a � b} let m1’ = store m1 a v in

Access to a in memory of type {a}:
a ∼= a trivially holds

{a � b} let m2’ = store m2 b w in

Access to b in panorama, focus is {a}:
a � b holds by annotation

{a � b} let m’ = merge m1’ m2’ in
{a � b} let x = load m’ c in ...

Access to c in panorama, focus is {}:
Nothing to show

m

split

store store

merge

load

16



Normalisation

Remove all split and
merge from the program
Replace all memory
variables by some fixed m

let m1, m2 = split m {a} in
let m1’ = store m1 a v in
let m2’ = store m2 b w in
let m’ = merge m1’ m2’ in
let x = load m’ c in ...

let m = store m a v in
let m = store m b w in
let x = load m c in ...

17



Normalisation

Remove all split and
merge from the program
Replace all memory
variables by some fixed m

let m1, m2 = split m {a} in
let m1’ = store m1 a v in
let m2’ = store m2 b w in
let m’ = merge m1’ m2’ in
let x = load m’ c in ...

let m = store m a v in
let m = store m b w in
let x = load m c in ...

17



Normalisation

Remove all split and
merge from the program
Replace all memory
variables by some fixed m

let m1, m2 = split m {a} in
let m1’ = store m1 a v in
let m2’ = store m2 b w in
let m’ = merge m1’ m2’ in
let x = load m’ c in ...

let m = store m a v in
let m = store m b w in
let x = load m c in ...

17



Normalisation

Remove all split and
merge from the program
Replace all memory
variables by some fixed m

let m1, m2 = split m {a} in
let m1’ = store m1 a v in
let m2’ = store m2 b w in
let m’ = merge m1’ m2’ in
let x = load m’ c in ...

let m’ = store m a v in
let m’’ = store m’ b w in
let x = load m’’ c in ...

17



Core Theorem

Normalisation preserves semantics
Every well-typed program is semantically equivalent to its
normalisation.

Every well-typed program is realisable
Proof of correctness for transformations which change memory
dependencies, but not normalisation of a program

18



Core Theorem

Normalisation preserves semantics
Every well-typed program is semantically equivalent to its
normalisation.

Every well-typed program is realisable
Proof of correctness for transformations which change memory
dependencies, but not normalisation of a program

18



Core Theorem

Normalisation preserves semantics
Every well-typed program is semantically equivalent to its
normalisation.

Every well-typed program is realisable
Proof of correctness for transformations which change memory
dependencies, but not normalisation of a program

18



Outline

1 Introduction

2 Memory Model

3 Type System

4 Limitations, Conclusion

19



Limitations

Functions can only take one memory variable as argument: the
panorama memory

Need to merge all memories before calling a function
No support for compound data types
No support for pointer arithmetic

20



Summary

Contribution

Intermediate language with explicit memory dependencies
Reordering of independent memory operations inherent to the
representation

Proof of correctness based on embedded alias information
Realisability on a real machine guaranteed by typing relation
Memory safety in source language not required
Everything formalised and proven in Coq

21



Thank you very much for your
attention!

Questions?

The thesis is available online at
http://ralfj.de/cs/bachelor.pdf

22



IL/M Semantics

Three environments: Variables, Closures, Memories

let x = e in s variable binding
let m = store m a x in s memory store
let x = load m a in s memory load
let m = free m a in s memory deallocation
let m,m = split m A in s splitting memory
let m = merge m m in s merging memories

23



IL/M Semantics

Three environments: Variables, Closures, Memories

fun f x m = s in t function definition
f x m function application
x function return

No memory variables in closures

23



IL/M Semantics

Three environments: Variables, Closures, Memories

if x then s else t conditional

23



IL/M Semantics

Three environments: Variables, Closures, Memories

let m, a = alloc in s memory allocation

Needs to select a fresh address to keep memories disjoint
Maintain set of allocated addresses in state

23



Separation Logic

Separation Logic makes assertions about memory contents
Central idea: Separating conjunction φ ∗ ψ states that φ and ψ
apply to disjoint parts of the memory
Seems to fit well to the concept of split
However, the separating conjunction abstracts away from how
the memory is split

split would be non-deterministic if the separating conjunction
were used as specification

24



Separation Logic

Separation Logic makes assertions about memory contents
Central idea: Separating conjunction φ ∗ ψ states that φ and ψ
apply to disjoint parts of the memory
Seems to fit well to the concept of split
However, the separating conjunction abstracts away from how
the memory is split

split would be non-deterministic if the separating conjunction
were used as specification

24



Separation Logic: Describing memory domains

Assume a and b should be split into their own memory
We don’t know whether they are equal or not

Which separation-logical formula describes this memory?
a 7→ − denotes a memory which contains exactly a (singleton
memory)
Memory with a and b: (a 7→ − ∗ b 7→ −) ∨ (a 7→ − ∧ b 7→ −)

Combinatorial explosion!

25



Separation Logic: Describing memory domains

Assume a and b should be split into their own memory
We don’t know whether they are equal or not

Which separation-logical formula describes this memory?
a 7→ − denotes a memory which contains exactly a (singleton
memory)
Memory with a and b: (a 7→ − ∗ b 7→ −) ∨ (a 7→ − ∧ b 7→ −)

Combinatorial explosion!

25



Separation Logic: Representing alias information

Fundamental structural difference
Separation Logic is designed for a top-down view

φ ∗ ψ:

φ ψ

Alias information is very local

a b
c

d
?

Enumerating all these local memories adds overhead for no
visible benefit

26



Separation Logic: Representing alias information

Fundamental structural difference
Separation Logic is designed for a top-down view

φ ∗ (ψ1 ∗ ψ2):

φ
ψ2

ψ1

Alias information is very local

a b
c

d
?

Enumerating all these local memories adds overhead for no
visible benefit

26



Separation Logic: Representing alias information

Fundamental structural difference
Separation Logic is designed for a top-down view

φ ∗ (ψ1 ∗ ψ2):

φ
ψ2

ψ1

Alias information is very local

a b
c

d
?

Enumerating all these local memories adds overhead for no
visible benefit

26


	Introduction
	Memory Model
	Type System
	Limitations, Conclusion

