X-Git-Url: https://git.ralfj.de/rust-101.git/blobdiff_plain/a2eeb1b93e8f52b2119fb11d56f5ffc764ac747b..e8cb1a8966a7662eeb9fc19173a5498f7cd815b6:/src/part16.rs?ds=sidebyside diff --git a/src/part16.rs b/src/part16.rs index a613430..f0707aa 100644 --- a/src/part16.rs +++ b/src/part16.rs @@ -1,11 +1,11 @@ -// Rust-101, Part 16: Unsafe, Drop (WIP) -// =============================== +// Rust-101, Part 16: Unsafe Rust, Drop +// ==================================== use std::ptr; use std::mem; use std::marker::PhantomData; -//@ As we saw, the rules Rust imposes can get us pretty far: A surprising amount of programming patterns +//@ As we saw, the rules Rust imposes to ensure memory safety can get us pretty far. A large amount of programming patterns //@ can be written within safe Rust, and, more importantly, library code like iterators or threads can make //@ use of the type system to ensure some level of correctness beyond basic memory safety. //@ @@ -13,17 +13,16 @@ use std::marker::PhantomData; //@ will be cases where it may be possible to satisfy the compiler, but only at the cost of some run-time overhead, //@ as we saw with `RefCell` - overhead which may not be acceptable. In such a situation, it is possible to //@ use *unsafe* Rust: That's a part of the language that is *known* to open the gate to invalid pointer access -//@ and all other sorts of memory safety. It is typically disabled, guarded by the keyword `unsafe`. Of course, -//@ `unsafe` also means "Here Be Dragons": You are on your own now. Types like `Rc` and `Vec` are implemented -//@ `using unsafe Rust. +//@ and all other sorts of memory safety. Of course, `unsafe` also means "Here Be Dragons": You are on your own now.
+//@ The goal in these cases is to confine unsafety to the local module. Types like `Rc` and `Vec` are implemented +//@ using unsafe Rust, but *using* them as we did is (believed to be) perfectly safe. //@ //@ ## Unsafe Code //@ As an example, let us write a doubly-linked list. Clearly, such a data-structure involves aliasing and mutation: -//@ Every node in the list is pointed to by its left and right neighbor, but still we will want to modify the nodes -//@ (either to change the value at that place, or to insert new nodes). We could now try some clever combination of -//@ `Rc` and `RefCell`, but this would end up being quite annoying - and it would incur some over-head. For a low-level -//@ data-structure like a doubly-linked list, it makes sense to implement an efficient version *once*, that is unsafe -//@ internally, but taht can be used without any risk by safe client code. +//@ Every node in the list is pointed to by its left and right neighbor, but still we will want to modify the nodes. We +//@ could now try some clever combination of `Rc` and `RefCell`, but this would end up being quite annoying - and it would +//@ incur some overhead. For a low-level data-structure like a doubly-linked list, it makes sense to implement an efficient +//@ version once, that is unsafe internally, but that can be used without any risk by safe client code. //@ As usually, we start by defining the types. Everything is parameterized by the type `T` of the data stored in the list. // A node of the list consists of the data, and two node pointers for the predecessor and successor. @@ -32,38 +31,43 @@ struct Node { prev: NodePtr, data: T, } -// A node pointer is a *mutable raw point* to a node. -//@ Raw pointers (`*mut T` and `*const T`) are the Rust equivalent of pointers in C. Unlike borrows, they do not come with -//@ any guarantees: Raw pointers can be null, or they can point to garbage. They don't have a lifetime. +// A node pointer is a *mutable raw pointer* to a node. +//@ Raw pointers (`*mut T` and `*const T`) are the Rust equivalent of pointers in C. Unlike references, they do not come with +//@ any guarantees: Raw pointers can be null, or they can point to garbage. They don't have a lifetime, either. type NodePtr = *mut Node; // The linked list itself stores pointers to the first and the last node. In addition, we tell Rust that this type // will own data of type `T`. //@ The type `PhantomData` does not actually store anything in memory - it has size zero. However, logically, //@ Rust will consider a `T` to be present. In this case, Rust knows that data of type `T` may be dropped -//@ whenever a `LinkedList` is dropped. The checks involving destructors are pretty subtle, so it's always -//@ a good idea to provide such extra information. In safe Rust, this can all be done automatically, but here, -//@ we just have a `*mut Node`, which Rust does not consider as actually owning the data it points to. +//@ whenever a `LinkedList` is dropped. Dropping has a lot of subtle checks to it, making sure that things can't go +//@ wrong. For this to work, Rust needs to know which types could potentially be dropped. In safe Rust, this can all be inferred +//@ automatically, but here, we just have a `*mut Node`, and we need to tell Rust that we actually own such data and will drop it. +//@ (For more of the glory details, see [this RFC](https://github.com/rust-lang/rfcs/blob/master/text/0769-sound-generic-drop.md).) pub struct LinkedList { first: NodePtr, last: NodePtr, _marker: PhantomData, } -//@ Before we get to the actual linked-list methods, we write two short helper functions converting between -//@ mutable raw pointers, and owned pointers (aka `Box`). Both employ `mem::transmute`, which is Rust's -//@ `reinterpret_cast`: It can convert anything to anything, by just re-interpreting the bytes. Clearly, -//@ that's an unsafe operation. +//@ Before we get to the actual linked-list methods, we write two short helper functions converting between mutable raw pointers, +//@ and boxed data. Both employ `mem::transmute`, which can convert anything to anything, by just re-interpreting the bytes. +//@ Clearly, that's an unsafe operation and must only be used with great care - or even better, not at all. Seriously. +//@ If at all possible, you should never use `transmute`.
+//@ We are making the assumption here that a `Box` and a raw pointer have the same representation in memory. In the future, +//@ Rust will [provide](https://doc.rust-lang.org/beta/alloc/boxed/struct.Box.html#method.from_raw) such [operations](https://doc.rust-lang.org/beta/alloc/boxed/struct.Box.html#method.into_raw) in the standard library, but the exact API is still being fleshed out. //@ We declare `raw_into_box` to be an `unsafe` function, telling Rust that calling this function is not generally safe. -//@ The caller will have to ensure that `r` is a valid pointer, and that nobody else has a pointer to this data. +//@ This grants us the unsafe powers for the body of the function: We can dereference raw pointers, and - most importantly - we +//@ can call unsafe functions. (The other unsafe powers won't be relevant here. Go read [The Rustonomicon](https://doc.rust-lang.org/nightly/nomicon/) +//@ if you want to learn all about this, but be warned - That Way Lies Madness.)
+//@ Here, the caller will have to ensure that `r` is a valid pointer, and that nobody else has a pointer to this data. unsafe fn raw_into_box(r: *mut T) -> Box { mem::transmute(r) } -//@ The case is slightly different for `box_into_raw`: Converting a `Box` to a raw pointer is always safe. I just drops some -//@ information. Hence we keep the function itself safe, and use an *unsafe block* within the function. This is an (unchecked) -//@ promise to the Rust compiler, saying that even though the code inside that block *could* go wrong, we actually know that -//@ it will not. +//@ The case is slightly different for `box_into_raw`: Converting a `Box` to a raw pointer is always safe. It just drops some information. +//@ Hence we keep the function itself safe, and use an *unsafe block* within the function. This is an (unchecked) promise to the Rust +//@ compiler, saying that a safe invocation of `box_into_raw` cannot go wrong. We also have the unsafe powers in the unsafe block. fn box_into_raw(b: Box) -> *mut T { unsafe { mem::transmute(b) } } @@ -74,14 +78,13 @@ impl LinkedList { LinkedList { first: ptr::null_mut(), last: ptr::null_mut(), _marker: PhantomData } } - // Add a new node to the end of the list. + // This function adds a new node to the end of the list. pub fn push_back(&mut self, t: T) { // Create the new node, and make it a raw pointer. - //@ Calling `box_into_raw` gives up ownership of the box, which is crucial: We don't want the - //@ memory that it points to to be deallocated! + //@ Calling `box_into_raw` gives up ownership of the box, which is crucial: We don't want the memory that it points to to be deallocated! let new = Box::new( Node { data: t, next: ptr::null_mut(), prev: self.last } ); let new = box_into_raw(new); - // Update other points to this node. + // Update other pointers to this node. if self.last.is_null() { debug_assert!(self.first.is_null()); // The list is currently empty, so we have to update the head pointer. @@ -89,7 +92,7 @@ impl LinkedList { } else { debug_assert!(!self.first.is_null()); // We have to update the `next` pointer of the tail node. - //@ Since Rust does not know that a raw pointer actually to anything, dereferencing such a pointer is + //@ Since Rust does not know that a raw pointer actually points to anything, dereferencing such a pointer is //@ an unsafe operation. So this unsafe block promises that the pointer will actually be valid. unsafe { (*self.last).next = new; } /*@*/ } @@ -101,9 +104,9 @@ impl LinkedList { // Add testcases for `push_back` and all of your functions. The `pop` functions should take `&mut self` // and return `Option`. - // Of course, we will also want to provide an iterator. + // Next, we are going to provide an iterator. //@ This function just creates an instance of `IterMut`, the iterator type which does the actual work. - pub fn iter_mut(&self) -> IterMut { + pub fn iter_mut(&mut self) -> IterMut { IterMut { next: self.first, _marker: PhantomData } } } @@ -112,15 +115,15 @@ impl LinkedList { //@ that it is going to visit. However, how do we make sure that this pointer remains valid? We have to //@ get this right ourselves, as we left the safe realms of borrowing and ownership. Remember that the //@ key ingredient for iterator safety was to tie the lifetime of the iterator to the lifetime of the -//@ borrow used for `iter_mut`. We will thus give `IterMut` two parameters: A type parameter specifying +//@ reference used for `iter_mut`. We will thus give `IterMut` two parameters: A type parameter specifying //@ the type of the data, and a lifetime parameter specifying for how long the list was borrowed to the //@ iterator. -//@ + //@ For Rust to accept the type, we have to add two more annotations. First of all, we have to ensure that //@ the data in the list lives at least as long as the iterator: If you drop the `T: 'a`, Rust will tell //@ you to add it back. And secondly, Rust will complain if `'a` is not actually used in the struct. //@ It doesn't know what it is supposed to do with that lifetime. So we use `PhantomData` again to tell -//@ it that in terms of ownership, this type actually (mutably) borrows a linked list. This has no +//@ it that in terms of ownership, this type actually (uniquely) borrows a linked list. This has no //@ operational effect, but it means that Rust can deduce the intent we had when adding that //@ seemingly useless lifetime parameter. pub struct IterMut<'a, T> where T: 'a { @@ -136,14 +139,14 @@ impl<'a, T> Iterator for IterMut<'a, T> { fn next(&mut self) -> Option { // The actual iteration is straight-forward: Once we reached a null pointer, we are done. if self.next.is_null() { - None + None } else { - // Otherwise, we can convert the next pointer to a borrow, get a borrow to the data + // Otherwise, we can convert the next pointer to a reference, get a reference to the data // and update the iterator. let next = unsafe { &mut *self.next }; let ret = &mut next.data; - self.next = next.next; - Some(ret) + self.next = next.next; /*@*/ + Some(ret) /*@*/ } } } @@ -151,26 +154,26 @@ impl<'a, T> Iterator for IterMut<'a, T> { //@ In `next` above, we made crucial use of the assumption that `self.next` is either null or a valid pointer. //@ This only works because if someone tries to delete elements from a list during iteration, we know that the borrow checker //@ will catch them: If they call `next`, the lifetime `'a` we artificially added to the iterator has to still be -//@ active, which means the mutable borrow passed to `iter_mut` is still active, which means nobody can delete +//@ active, which means the mutable reference passed to `iter_mut` is still active, which means nobody can delete //@ anything from the list. In other words, we make use of the expressive type system of Rust, decorating //@ our own unsafe implementation with just enough information so that Rust can check *uses* of the linked-list. //@ If the type system were weaker, we could not write a linked-list like the above with a safe interface! -// **Exercise 16.2**: Add a method `iter` and a type `Iter` providing iteration for shared borrows. +// **Exercise 16.2**: Add a method `iter` and a type `Iter` providing iteration for shared references. // Add testcases for both kinds of iterators. // ## `Drop` -//@ The linked list we wrote is already working quite nicely, but there is one problem: When the list is removed, +//@ The linked list we wrote is already working quite nicely, but there is one problem: When the list is dropped, //@ nobody bothers to deallocate the remaining nodes. Even worse, if `T` itself has a destructor that needs to //@ clean up, it is not called for the element remaining in the list. We need to take care of that ourselves. -//@ + //@ In Rust, adding a destructor for a type is done by implementing the `Drop` trait. This is a very special trait. //@ It can only be implemented for *nominal types*, i.e., you cannot implement `Drop` for `&mut T`. You also cannot -//@ restrict the type and lifetime parameters further - the `Drop` implementation has to apply to *all* instances +//@ restrict the type and lifetime parameters further than the type does - the `Drop` implementation has to apply to *all* instances //@ of `LinkedList`. impl Drop for LinkedList { // The destructor itself is a method which takes `self` in mutably borrowed form. It cannot own `self`, because then - // the destructor of `self` would be called at the end pf the function, resulting in endless recursion... + // the destructor of `self` would be called at the end of the function, resulting in endless recursion. fn drop(&mut self) { let mut cur_ptr = self.first; while !cur_ptr.is_null() { @@ -185,12 +188,13 @@ impl Drop for LinkedList { } } -//@ ## The End -//@ Congratulations! You complete Rust-101. This was the last example of the last part. I hope you enjoyed it. -//@ If you have feedback, please head to the [Rust-101](https://www.ralfj.de/projects/rust-101/) website -//@ and let me know how you liked it. The entire course is open-source (under CC-BY-SA 4.0), and contributions are welcome! +// ## The End +//@ Congratulations! You completed Rust-101. This was the last part of the course. I hope you enjoyed it. +//@ If you have feedback or want to contribute yourself, please head to the [Rust-101](https://www.ralfj.de/projects/rust-101/) website +//@ fur further information. The entire course is open-source (under [CC-BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/)). //@ -//@ The [index](main.html) contains some more links to additional resources you may find useful. With that, there's -//@ only one thing left to say: Happy Rust Hacking! +//@ If you want to do more, the examples you saw in this course provide lots of playground for coming up with your own little +//@ extensions here and there. The [index](main.html) contains some more links to additional resources you may find useful. +//@ With that, there's only one thing left to say: Happy Rust Hacking! -//@ [index](main.html) | [previous](part15.html) +//@ [index](main.html) | [previous](part15.html) | [raw source](workspace/src/part16.rs) | next