X-Git-Url: https://git.ralfj.de/rust-101.git/blobdiff_plain/66c777f23e032d445e29b1b40faa8e1799b4930c..20c3754739514b710a2e6744c9fd43bcb83c4706:/src/part09.rs?ds=sidebyside diff --git a/src/part09.rs b/src/part09.rs index 482b293..ecb9ffa 100644 --- a/src/part09.rs +++ b/src/part09.rs @@ -1,26 +1,27 @@ -// Rust-101, Part 09: Iterators (WIP) -// ================================== +// Rust-101, Part 09: Iterators +// ============================ use part05::BigInt; -// In the following, we will look into the iterator mechanism of Rust and make our `BigInt` compatible -// with the `for` loops. Of course, this is all about implementing particular traits again. In particular, -// an iterator is something that implements the `Iterator` trait. As you can see in [the documentation](http://doc.rust-lang.org/beta/std/iter/trait.Iterator.html), -// this trait mandates a single function `next` returning an `Option`, where `Item` is an -// associated type chosen by the implementation. (There are many more methods provided for `Iterator`, -// but they all have default implementations, so we don't have to worry about them right now). -// -// For the case of `BigInt`, we want our iterator to iterate over the digits in normal, notational order: The most-significant -// digit comes first. So, we have to write down some type, and implement `Iterator` for it such that `next` returns the digits -// one-by-one. Clearly, the iterator must somehow be able to access the number it iterates over, and it must store its current -// location. However, it cannot *own* the `BigInt`, because then the number would be gone after iteration! That'd certainly be bad. -// The only alternative is for the iterator to *borrow* the number. +//@ In the following, we will look into the iterator mechanism of Rust and make our `BigInt` compatible +//@ with the `for` loops. Of course, this is all about implementing certain traits again. In particular, +//@ an iterator is something that implements the `Iterator` trait. As you can see in [the documentation](https://doc.rust-lang.org/stable/std/iter/trait.Iterator.html), +//@ this trait mandates a single function `next` returning an `Option`, where `Item` is an +//@ associated type chosen by the implementation. (There are many more methods provided for `Iterator`, +//@ but they all have default implementations, so we don't have to worry about them right now.) +//@ +//@ For the case of `BigInt`, we want our iterator to iterate over the digits in normal, notational order: The most-significant +//@ digit comes first. So, we have to write down some type, and implement `Iterator` for it such that `next` returns the digits +//@ one-by-one. Clearly, the iterator must somehow be able to access the number it iterates over, and it must store its current +//@ location. However, it cannot *own* the `BigInt`, because then the number would be gone after iteration! That'd certainly be bad. +//@ The only alternative is for the iterator to *borrow* the number, so it takes a reference. -// In writing this down, we again have to be explicit about the lifetime of the borrow: We can't just have an -// `Iter`, we must have an `Iter<'a>` that borrowed the number for lifetime `'a`.
-// `usize` here is the type of unsigned, pointer-sized numbers. It is typically the type of "lengths of things", -// in particular, it is the type of the length of a `Vec` and hence the right type to store an offset into the vector of digits. -struct Iter<'a> { +//@ In writing this down, we again have to be explicit about the lifetime of the reference: We can't just have an +//@ `Iter`, we must have an `Iter<'a>` that borrows the number for lifetime `'a`. This is our first example of +//@ a data-type that's polymorphic in a lifetime, as opposed to a type.
+//@ `usize` here is the type of unsigned, pointer-sized numbers. It is typically the type of "lengths of things", +//@ in particular, it is the type of the length of a `Vec` and hence the right type to store an offset into the vector of digits. +pub struct Iter<'a> { num: &'a BigInt, idx: usize, // the index of the last number that was returned } @@ -33,10 +34,10 @@ impl<'a> Iterator for Iter<'a> { fn next(&mut self) -> Option { // First, check whether there's any more digits to return. if self.idx == 0 { - // We already returned all the digits. + // We already returned all the digits, nothing to do. None /*@*/ } else { - // Decrement, and return next digit. + // Otherwise: Decrement, and return next digit. self.idx = self.idx - 1; /*@*/ Some(self.num.data[self.idx]) /*@*/ } @@ -45,9 +46,9 @@ impl<'a> Iterator for Iter<'a> { // All we need now is a function that creates such an iterator for a given `BigInt`. impl BigInt { - // Notice that when we write the type of `iter`, we don't actually have to give the lifetime parameter of `Iter`. Just as it is - // the case with functions returning borrowed data, you can elide the lifetime. The rules for adding the lifetimes are exactly the - // same. (See the last section of [part 06](part06.html).) + //@ Notice that when we write the type of `iter`, we don't actually have to give the lifetime parameter of `Iter`. Just as it is + //@ the case with functions returning references, you can elide the lifetime. The rules for adding the lifetimes are exactly the + //@ same. (See the last section of [part 06](part06.html).) fn iter(&self) -> Iter { Iter { num: self, idx: self.data.len() } /*@*/ } @@ -61,4 +62,88 @@ pub fn main() { } } -//@ [index](main.html) | [previous](part08.html) | [next](main.html) +// Of course, we don't have to use `for` to apply the iterator. We can also explicitly call `next`. +fn print_digits_v1(b: &BigInt) { + let mut iter = b.iter(); + //@ `loop` is the keyword for a loop without a condition: It runs endlessly, or until you break out of + //@ it with `break` or `return`. + loop { + // Each time we go through the loop, we analyze the next element presented by the iterator - until it stops. + match iter.next() { /*@*/ + None => break, /*@*/ + Some(digit) => println!("{}", digit) /*@*/ + } /*@*/ + } +} + +//@ Now, it turns out that this combination of doing a loop and a pattern matching is fairly common, and Rust +//@ provides some convenient syntactic sugar for it. +fn print_digits_v2(b: &BigInt) { + let mut iter = b.iter(); + //@ `while let` performs the given pattern matching on every round of the loop, and cancels the loop if the pattern + //@ doesn't match. There's also `if let`, which works similar, but of course without the loopy part. + while let Some(digit) = iter.next() { + println!("{}", digit) + } +} + +// **Exercise 09.1**: Write a testcase for the iterator, making sure it yields the corrects numbers. +// +// **Exercise 09.2**: Write a function `iter_ldf` that iterators over the digits with the least-significant +// digits coming first. Write a testcase for it. + +// ## Iterator invalidation and lifetimes +//@ You may have been surprised that we had to explicitly annotate a lifetime when we wrote `Iter`. Of +//@ course, with lifetimes being present at every reference in Rust, this is only consistent. But do we at +//@ least gain something from this extra annotation burden? (Thankfully, this burden only occurs when we +//@ define *types*, and not when we define functions - which is typically much more common.) + +//@ It turns out that the answer to this question is yes! This particular aspect of the concept of +//@ lifetimes helps Rust to eliminate the issue of *iterator invalidation*. Consider the following +//@ piece of code. +fn iter_invalidation_demo() { + let mut b = BigInt::new(1 << 63) + BigInt::new(1 << 16) + BigInt::new(1 << 63); + for digit in b.iter() { + println!("{}", digit); + /*b = b + BigInt::new(1);*/ /* BAD! */ + } +} +//@ If you enable the bad line, Rust will reject the code. Why? The problem is that we are modifying the +//@ number while iterating over it. In other languages, this can have all sorts of effects from inconsistent +//@ data or throwing an exception (Java) to bad pointers being dereferenced (C++). Rust, however, is able to +//@ detect this situation. When you call `iter`, you have to borrow `b` for some lifetime `'a`, and you obtain +//@ `Iter<'a>`. This is an iterator that's only valid for lifetime `'a`. Gladly, we have this annotation available +//@ to make such a statement. Rust enforces that `'a` spans every call to `next`, which means it has to span the loop. +//@ Thus `b` is borrowed for the duration of the loop, and we cannot mutate it. This is yet another example for +//@ how the combination of mutation and aliasing leads to undesired effects (not necessarily crashes, think of Java), +//@ which Rust successfully prevents. + +// ## Iterator conversion trait +//@ If you closely compare the `for` loop in `main` above, with the one in `part06::vec_min`, you will notice that we were able to write +//@ `for e in v` earlier, but now we have to call `iter`. Why is that? Well, the `for` sugar is not actually tied to `Iterator`. +//@ Instead, it demands an implementation of [`IntoIterator`](https://doc.rust-lang.org/stable/std/iter/trait.IntoIterator.html). +//@ That's a trait of types that provide a *conversion* function into some kind of iterator. These conversion traits are a frequent +//@ pattern in Rust: Rather than demanding that something is an iterator, or a string, or whatever; one demands that something +//@ can be converted to an iterator/string/whatever. This provides convenience similar to overloading of functions: The function +//@ can be called with lots of different types. By implementing such traits for your types, you can even make your own types +//@ work smoothly with existing library functions. As usually for Rust, this abstraction comes at zero cost: If your data is already +//@ of the right type, the conversion function will not do anything and trivially be optimized away. + +//@ If you have a look at the documentation of `IntoIterator`, you will notice that the function `into_iter` it provides actually +//@ consumes its argument. So we implement the trait for *references to* numbers, such that the number is not lost after the iteration. +impl<'a> IntoIterator for &'a BigInt { + type Item = u64; + type IntoIter = Iter<'a>; + fn into_iter(self) -> Iter<'a> { + self.iter() + } +} +// With this in place, you can now replace `b.iter()` in `main` by `&b`. Go ahead and try it!
+//@ Wait, `&b`? Why that? Well, we implemented `IntoIterator` for `&BigInt`. If we are in a place where `b` is already borrowed, we can +//@ just do `for digit in b`. If however, we own `b`, we have to create a reference to it. Alternatively, we could implement `IntoIterator` +//@ for `BigInt` - which, as already mentioned, would mean that `b` is actually consumed by the iteration, and gone. This can easily happen, +//@ for example, with a `Vec`: Both `Vec` and `&Vec` (and `&mut Vec`) implement `IntoIterator`, so if you do `for e in v`, and `v` has type `Vec`, +//@ then you will obtain ownership of the elements during the iteration - and destroy the vector in the process. We actually did that in +//@ `part01::vec_min`, but we did not care. You can write `for e in &v` or `for e in v.iter()` to avoid this. + +//@ [index](main.html) | [previous](part08.html) | [raw source](https://www.ralfj.de/git/rust-101.git/blob_plain/HEAD:/workspace/src/part09.rs) | [next](part10.html)