X-Git-Url: https://git.ralfj.de/rust-101.git/blobdiff_plain/4f61be32dd480f23a7fef05ee66c42ae27c980c6..562558d25054c5be82f11acad0fbe53699de5b1c:/workspace/src/part08.rs?ds=sidebyside diff --git a/workspace/src/part08.rs b/workspace/src/part08.rs index d02cad5..0118906 100644 --- a/workspace/src/part08.rs +++ b/workspace/src/part08.rs @@ -1,23 +1,28 @@ -// ***Remember to enable/add this part in `main.rs`!*** +// Rust-101, Part 08: Associated Types, Modules +// ============================================ -// Rust-101, Part 08: Associated Types, Modules (WIP) -// ================================================== - -use std::cmp; -use std::ops; -use std::fmt; +use std::{cmp,ops}; use part05::BigInt; -// Add with carry, returning the sum and the carry + +// So, let us write a function to "add with carry", and give it the appropriate type. Notice Rust's native support for pairs. fn overflowing_add(a: u64, b: u64, carry: bool) -> (u64, bool) { - let sum = u64::wrapping_add(a, b); - if sum >= a { // first addition did not overflow + let sum = a.wrapping_add(b); + // If an overflow happened, then the sum will be smaller than *both* summands. Without an overflow, of course, it will be + // at least as large as both of them. So, let's just pick one and check. + if sum >= a { + // The addition did not overflow.
+ // **Exercise 08.1**: Write the code to handle adding the carry in this case. unimplemented!() - } else { // first addition *did* overflow + } else { + // Otherwise, the addition *did* overflow. It is impossible for the addition of the carry + // to overflow again, as we are just adding 0 or 1. unimplemented!() } } +// `overflow_add` is a sufficiently intricate function that a test case is justified. +// This should also help you to check your solution of the exercise. /*#[test]*/ fn test_overflowing_add() { assert_eq!(overflowing_add(10, 100, false), (110, false)); @@ -27,12 +32,62 @@ fn test_overflowing_add() { assert_eq!(overflowing_add(1 << 63, (1 << 63) -1 , true), (0, true)); } -impl ops::Add for BigInt { +// ## Associated Types +impl ops::Add for BigInt { + + // Here, we choose the result type to be again `BigInt`. type Output = BigInt; + + // Now we can write the actual function performing the addition. fn add(self, rhs: BigInt) -> Self::Output { - let mut result_vec:Vec = Vec::with_capacity(cmp::max(self.data.len(), rhs.data.len())); + // We know that the result will be *at least* as long as the longer of the two operands, + // so we can create a vector with sufficient capacity to avoid expensive reallocations. + let max_len = cmp::max(self.data.len(), rhs.data.len()); + let mut result_vec:Vec = Vec::with_capacity(max_len); + let mut carry = false; /* the current carry bit */ + for i in 0..max_len { + let lhs_val = if i < self.data.len() { self.data[i] } else { 0 }; + let rhs_val = if i < rhs.data.len() { rhs.data[i] } else { 0 }; + // Compute next digit and carry. Then, store the digit for the result, and the carry for later. + unimplemented!() + } + // **Exercise 08.2**: Handle the final `carry`, and return the sum. + unimplemented!() + } +} + +// ## Traits and borrowed types + +// Writing this out becomes a bit tedious, because trait implementations (unlike functions) require full explicit annotation +// of lifetimes. Make sure you understand exactly what the following definition says. Notice that we can implement a trait for +// a borrowed type! +impl<'a, 'b> ops::Add<&'a BigInt> for &'b BigInt { + type Output = BigInt; + fn add(self, rhs: &'a BigInt) -> Self::Output { + // **Exercise 08.3**: Implement this function. unimplemented!() } } -// [index](main.html) | [previous](part07.html) | [next](main.html) +// **Exercise 08.4**: Implement the two missing combinations of arguments for `Add`. You should not have to duplicate the implementation. + +// ## Modules + +// Rust calls a bunch of definitions that are grouped together a *module*. You can put the tests in a submodule as follows. +#[cfg(test)] +mod tests { + use part05::BigInt; + + /*#[test]*/ + fn test_add() { + let b1 = BigInt::new(1 << 32); + let b2 = BigInt::from_vec(vec![0, 1]); + + assert_eq!(&b1 + &b2, BigInt::from_vec(vec![1 << 32, 1])); + // **Exercise 08.5**: Add some more cases to this test. + } +} + +// **Exercise 08.6**: Write a subtraction function, and testcases for it. Decide for yourself how you want to handle negative results. +// For example, you may want to return an `Option`, to panic, or to return `0`. +