X-Git-Url: https://git.ralfj.de/rust-101.git/blobdiff_plain/2d40516a8393db1f27bb822ff95c71a1a9c82537..ab7f9b241429bd675b437d2437799de75d2f409b:/workspace/src/part08.rs diff --git a/workspace/src/part08.rs b/workspace/src/part08.rs deleted file mode 100644 index 5ddcb33..0000000 --- a/workspace/src/part08.rs +++ /dev/null @@ -1,93 +0,0 @@ -// Rust-101, Part 08: Associated Types, Modules -// ============================================ - -use std::{cmp,ops}; -use part05::BigInt; - - -// So, let us write a function to "add with carry", and give it the appropriate type. Notice Rust's native support for pairs. -fn overflowing_add(a: u64, b: u64, carry: bool) -> (u64, bool) { - let sum = a.wrapping_add(b); - // If an overflow happened, then the sum will be smaller than *both* summands. Without an overflow, of course, it will be - // at least as large as both of them. So, let's just pick one and check. - if sum >= a { - // The addition did not overflow.
- // **Exercise 08.1**: Write the code to handle adding the carry in this case. - unimplemented!() - } else { - // Otherwise, the addition *did* overflow. It is impossible for the addition of the carry - // to overflow again, as we are just adding 0 or 1. - unimplemented!() - } -} - -// `overflow_add` is a sufficiently intricate function that a test case is justified. -// This should also help you to check your solution of the exercise. -/*#[test]*/ -fn test_overflowing_add() { - assert_eq!(overflowing_add(10, 100, false), (110, false)); - assert_eq!(overflowing_add(10, 100, true), (111, false)); - assert_eq!(overflowing_add(1 << 63, 1 << 63, false), (0, true)); - assert_eq!(overflowing_add(1 << 63, 1 << 63, true), (1, true)); - assert_eq!(overflowing_add(1 << 63, (1 << 63) -1 , true), (0, true)); -} - -// ## Associated Types -impl ops::Add for BigInt { - - // Here, we choose the result type to be again `BigInt`. - type Output = BigInt; - - // Now we can write the actual function performing the addition. - fn add(self, rhs: BigInt) -> Self::Output { - // We know that the result will be *at least* as long as the longer of the two operands, - // so we can create a vector with sufficient capacity to avoid expensive reallocations. - let max_len = cmp::max(self.data.len(), rhs.data.len()); - let mut result_vec:Vec = Vec::with_capacity(max_len); - let mut carry = false; /* the current carry bit */ - for i in 0..max_len { - let lhs_val = if i < self.data.len() { self.data[i] } else { 0 }; - let rhs_val = if i < rhs.data.len() { rhs.data[i] } else { 0 }; - // Compute next digit and carry. Then, store the digit for the result, and the carry for later. - unimplemented!() - } - // **Exercise 08.2**: Handle the final `carry`, and return the sum. - unimplemented!() - } -} - -// ## Traits and reference types - -// Writing this out becomes a bit tedious, because trait implementations (unlike functions) require full explicit annotation -// of lifetimes. Make sure you understand exactly what the following definition says. Notice that we can implement a trait for -// a reference type! -impl<'a, 'b> ops::Add<&'a BigInt> for &'b BigInt { - type Output = BigInt; - fn add(self, rhs: &'a BigInt) -> Self::Output { - // **Exercise 08.3**: Implement this function. - unimplemented!() - } -} - -// **Exercise 08.4**: Implement the two missing combinations of arguments for `Add`. You should not have to duplicate the implementation. - -// ## Modules - -// Rust calls a bunch of definitions that are grouped together a *module*. You can put the tests in a submodule as follows. -#[cfg(test)] -mod tests { - use part05::BigInt; - - /*#[test]*/ - fn test_add() { - let b1 = BigInt::new(1 << 32); - let b2 = BigInt::from_vec(vec![0, 1]); - - assert_eq!(&b1 + &b2, BigInt::from_vec(vec![1 << 32, 1])); - // **Exercise 08.5**: Add some more cases to this test. - } -} - -// **Exercise 08.6**: Write a subtraction function, and testcases for it. Decide for yourself how you want to handle negative results. -// For example, you may want to return an `Option`, to panic, or to return `0`. -