X-Git-Url: https://git.ralfj.de/rust-101.git/blobdiff_plain/1f6a5ed7a44ed00827fd3312503f20b8f52f94db..ebb00d95c585dd0520e54ec48df80262f02583cf:/src/part16.rs?ds=inline diff --git a/src/part16.rs b/src/part16.rs index 22c912a..e80d80a 100644 --- a/src/part16.rs +++ b/src/part16.rs @@ -5,7 +5,7 @@ use std::ptr; use std::mem; use std::marker::PhantomData; -//@ As we saw, the rules Rust imposes to ensure memory safety can get us pretty far. A surprising amount of programming patterns +//@ As we saw, the rules Rust imposes to ensure memory safety can get us pretty far. A large amount of programming patterns //@ can be written within safe Rust, and, more importantly, library code like iterators or threads can make //@ use of the type system to ensure some level of correctness beyond basic memory safety. //@ @@ -13,19 +13,16 @@ use std::marker::PhantomData; //@ will be cases where it may be possible to satisfy the compiler, but only at the cost of some run-time overhead, //@ as we saw with `RefCell` - overhead which may not be acceptable. In such a situation, it is possible to //@ use *unsafe* Rust: That's a part of the language that is *known* to open the gate to invalid pointer access -//@ and all other sorts of memory safety. It is typically disabled, guarded by the keyword `unsafe`. Of course, -//@ `unsafe` also means "Here Be Dragons": You are on your own now. -//@ +//@ and all other sorts of memory safety. Of course, `unsafe` also means "Here Be Dragons": You are on your own now.
//@ The goal in these cases is to confine unsafety to the local module. Types like `Rc` and `Vec` are implemented //@ using unsafe Rust, but *using* them as we did is (believed to be) perfectly safe. //@ //@ ## Unsafe Code //@ As an example, let us write a doubly-linked list. Clearly, such a data-structure involves aliasing and mutation: -//@ Every node in the list is pointed to by its left and right neighbor, but still we will want to modify the nodes -//@ (either to change the value at that place, or to insert/delete nodes). We could now try some clever combination of -//@ `Rc` and `RefCell`, but this would end up being quite annoying - and it would incur some over-head. For a low-level -//@ data-structure like a doubly-linked list, it makes sense to implement an efficient version *once*, that is unsafe -//@ internally, but that can be used without any risk by safe client code. +//@ Every node in the list is pointed to by its left and right neighbor, but still we will want to modify the nodes. We +//@ could now try some clever combination of `Rc` and `RefCell`, but this would end up being quite annoying - and it would +//@ incur some overhead. For a low-level data-structure like a doubly-linked list, it makes sense to implement an efficient +//@ version once, that is unsafe internally, but that can be used without any risk by safe client code. //@ As usually, we start by defining the types. Everything is parameterized by the type `T` of the data stored in the list. // A node of the list consists of the data, and two node pointers for the predecessor and successor. @@ -58,16 +55,19 @@ pub struct LinkedList { //@ Clearly, that's an unsafe operation and must only be used with great care - or even better, not at all. Seriously. //@ If at all possible, you should never use `transmute`.
//@ We are making the assumption here that a `Box` and a raw pointer have the same representation in memory. In the future, -//@ Rust will [provide](http://doc.rust-lang.org/beta/alloc/boxed/struct.Box.html#method.from_raw) such [operations](http://doc.rust-lang.org/beta/alloc/boxed/struct.Box.html#method.into_raw) in the standard library, but the exact API is still being fleshed out. +//@ Rust will [provide](https://doc.rust-lang.org/beta/alloc/boxed/struct.Box.html#method.from_raw) such [operations](https://doc.rust-lang.org/beta/alloc/boxed/struct.Box.html#method.into_raw) in the standard library, but the exact API is still being fleshed out. //@ We declare `raw_into_box` to be an `unsafe` function, telling Rust that calling this function is not generally safe. -//@ The caller will have to ensure that `r` is a valid pointer, and that nobody else has a pointer to this data. +//@ This grants us the unsafe powers for the body of the function: We can dereference raw pointers, and - most importantly - we +//@ can call unsafe functions. (The other unsafe powers won't be relevant here. Go read [The Rustonomicon](https://doc.rust-lang.org/nightly/nomicon/) +//@ if you want to learn all about this, but be warned - That Way Lies Madness.)
+//@ Here, the caller will have to ensure that `r` is a valid pointer, and that nobody else has a pointer to this data. unsafe fn raw_into_box(r: *mut T) -> Box { mem::transmute(r) } -//@ The case is slightly different for `box_into_raw`: Converting a `Box` to a raw pointer is always safe. I just drops some -//@ information. Hence we keep the function itself safe, and use an *unsafe block* within the function. This is an (unchecked) -//@ promise to the Rust compiler, saying that a safe invocation of `box_into_raw` cannot go wrong. +//@ The case is slightly different for `box_into_raw`: Converting a `Box` to a raw pointer is always safe. It just drops some information. +//@ Hence we keep the function itself safe, and use an *unsafe block* within the function. This is an (unchecked) promise to the Rust +//@ compiler, saying that a safe invocation of `box_into_raw` cannot go wrong. We also have the unsafe powers in the unsafe block. fn box_into_raw(b: Box) -> *mut T { unsafe { mem::transmute(b) } } @@ -84,7 +84,7 @@ impl LinkedList { //@ Calling `box_into_raw` gives up ownership of the box, which is crucial: We don't want the memory that it points to to be deallocated! let new = Box::new( Node { data: t, next: ptr::null_mut(), prev: self.last } ); let new = box_into_raw(new); - // Update other points to this node. + // Update other pointers to this node. if self.last.is_null() { debug_assert!(self.first.is_null()); // The list is currently empty, so we have to update the head pointer. @@ -106,7 +106,7 @@ impl LinkedList { // Next, we are going to provide an iterator. //@ This function just creates an instance of `IterMut`, the iterator type which does the actual work. - pub fn iter_mut(&self) -> IterMut { + pub fn iter_mut(&mut self) -> IterMut { IterMut { next: self.first, _marker: PhantomData } } } @@ -173,7 +173,7 @@ impl<'a, T> Iterator for IterMut<'a, T> { //@ of `LinkedList`. impl Drop for LinkedList { // The destructor itself is a method which takes `self` in mutably borrowed form. It cannot own `self`, because then - // the destructor of `self` would be called at the end pf the function, resulting in endless recursion... + // the destructor of `self` would be called at the end of the function, resulting in endless recursion... fn drop(&mut self) { let mut cur_ptr = self.first; while !cur_ptr.is_null() {