X-Git-Url: https://git.ralfj.de/rust-101.git/blobdiff_plain/09a36e34a7b4f163c25fb971771bc4c7edd63e2b..369875f931d841112dd2b6651fc968bb6c569cdb:/src/part05.rs diff --git a/src/part05.rs b/src/part05.rs index d7cf64a..a4478f8 100644 --- a/src/part05.rs +++ b/src/part05.rs @@ -2,15 +2,13 @@ // ======================== // ## Big Numbers -// In the course of the next few parts, we are going to build a data-structure for -// computations with *bug* numbers. We would like to not have an upper bound -// to how large these numbers can get, with the memory of the machine being the -// only limit. +// In the course of the next few parts, we are going to build a data-structure for computations with +// *big* numbers. We would like to not have an upper bound to how large these numbers can get, with +// the memory of the machine being the only limit. // // We start by deciding how to represent such big numbers. One possibility here is -// to use a vector of "small" numbers, which we will then consider the "digits" -// of the big number. This is like "1337" being a vector of 4 small numbers (1, 3, 3, 7), -// except that we will use `u64` as type of our base numbers. Now we just have to decide +// to use a vector "digits" of the big number. This is like "1337" being a vector of four digits (1, 3, 3, 7), +// except that we will use `u64` as type of our digits. Now we just have to decide // the order in which we store numbers. I decided that we will store the least significant // digit first. This means that "1337" would actually become (7, 3, 3, 1).
// Finally, we declare that there must not be any trailing zeros (corresponding to @@ -18,11 +16,10 @@ // the same number can only be stored in one way. // To write this down in Rust, we use a `struct`, which is a lot like structs in C: -// Just a collection of a bunch of named fields. Every field can be private to the current module -// (which is the default), or public (which would be indicated by a `pub` in front of the name). -// For the sake of the tutorial, we make `dat` public - otherwise, the next parts of this -// course could not work on `BigInt`s. Of course, in a real program, one would make the field -// private to ensure that the invariant (no trailing zeros) is maintained. +// Just a bunch of named fields. Every field can be private to the current module (which is the default), +// or public (which is indicated by a `pub` in front of the name). For the sake of the tutorial, we make +// `data` public - otherwise, the next parts of this course could not work on `BigInt`s. Of course, in a +// real program, one would make the field private to ensure that the invariant (no trailing zeros) is maintained. pub struct BigInt { pub data: Vec, } @@ -62,6 +59,11 @@ impl BigInt { } } +// **Exercise 05.1**: Write a function on `BigInt` that returns the number of digits. Write another one +// that increments the number by 1. +// +// *Hint*: To take `self` as a mutable borrow, write `fn inc1(&mut self)`. + // ## Cloning // If you have a close look at the type of `BigInt::from_vec`, you will notice that it // consumes the vector `v`. The caller hence loses access. There is however something @@ -88,6 +90,8 @@ impl Clone for BigInt { // Making a type clonable is such a common exercise that Rust can even help you doing it: // If you add `#[derive(Clone)]` right in front of the definition of `BigInt`, Rust will // generate an implementation of `Clone` that simply clones all the fields. Try it! +// These `#[...]` annotations at types (and functions, modules, crates) are called *attributes*. +// We will see some more examples of attributes later. // We can also make the type `SomethingOrNothing` implement `Clone`. However, that // can only work if `T` is `Clone`! So we have to add this bound to `T` when we introduce @@ -141,6 +145,6 @@ fn work_on_variant(mut var: Variant, text: String) { // that address, and Rust would eat your laundry - or whatever.) // // I hope this example clarifies why Rust has to rule out mutation in the presence of aliasing *in general*, -// not just for the specific +// not just for the specific case of a buffer being reallocated, and old pointers becoming hence invalid. // [index](main.html) | [previous](part04.html) | [next](part06.html)